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Single User Information Theory

Single-user information theory (Shannon 1948) deals with the study of 
the fundamental limits of reliable information transmission between a 
sender and a receiver over a noisy channel.

p(y|x)x y

C = max
pX(.)

{H(x) + H(y)−H(x, y)}

Key Idea: Block Coding
•  the behavior of the channel over a single channel use is
   unpredictable
•  but the behavior over many channel uses is:
         if the channel introduces error with probability p, say, over
                     channel uses it introduces            errors. n� 1 ≈ np



Coding Theory
The set of all codewords,  , is denoted by     

Encoder, rate 
b ∈ {0, 1}k c ∈ {0, 1}n

lim
n→∞

P (ĉ �= c) = 0

c C, (|C| = 2k)

Shannon: For all rates               , there exists a sequence of codes, 
such that

k/n < C

c = {ci}n
i=1 y = {yi}n

i=1Noisy Channel 

ĉ = arg max
c∈C

p(y|c)Maximum Likelihood Decoder:

= k/n

Reliability at the cost of delay

After 60 years of coding theory, there are currently many efficient codes that approach 
the Shannon limit.



Control Theory

• In control theory, we observe the output of a dynamical 
system and design a controller to regulate its behavior

• Controller needs to apply control action in real-time, delay 
can result in loss of performance and/or instability

• Very rich theory has been developed (e.g., LQG control, 
Kalman filtering, H∞ filtering, separation principle, etc)

• Virtually no interaction with information theory (plant and 
controller co-located , no measurement loss)

Plant

Controller



But, what if...?

• increasingly many applications where systems (autonomous agents, sensor/
actuator networks, smart grid etc.) are remotely controlled and where 
measurement and control signals are transmitted across noisy channels.

• conventional channel codes do not work as the ensuing delay might lead to 
instability

• Can we live with noisy channels? No! (e.g., if the noisy channels are erasure 
channels, Sinopoli et al(2005) showed that if the erasure probability is high enough 
then closed loop system is unstable)

• So, what do we need to guarantee the stability of the closed loop systems?

Noisy Channel

Plant

Controller

Noisy Channel



Coding for Interactive Communication

Consider a two-party communication system

Alice, Bob,
s1 = f1(x)

s2 = f2(y, s1)

s3 = f3(x, s1, s2)

.

.

.

x y

Can one do this reliably over noisy links?



Tree Codes

d

· · ·C C�

�C−C��H ∝ dTree Code: 

semi-infinite m-ary tree with each edge labeled by a symbol in an alphabet of 
size q > m

f1(0) f1(1)

f2(00) f2(01) f2(10) f2(11)



Tree Codes

• maps a sequence {bi}i>0 to a sequence {ci}i>0, where 
bi ∈ {0,1,…,m-1} and ci ∈ {0,1,…,q-1}

• represents a causal code with rate R = log(m)/log(q). In the 
example, ci = fi(b≤i).

• for every pair of paths with a common ancestor and length d, 
say, we require that the ”Hamming distance” between the 
paths be at least a fixed proportion of d

• Schulman proved the existence of tree codes

• along with ML decoding, allows reliable interactive communication 
over a noisy channel.

• Problem: No explicit constructions, no tractable decoding 
and existence result is not with high probability



Control over Noisy Channels

Noisy 
Channel

Controller

Plant
xt+1 = Fxt + G1ut + G2wt

Observer
yt = Hxt + vt

ut •  Automatic control over 
a noisy channel provides 
an interactive context in 
which the traditional 
notion of Shannon 
Capacity is no longer the 
right figure of merit 
[Sahai 2001].  
•  What sort of 
communication reliability 
do we need to guarantee 
closed loop stability?



Anytime Reliability - An Example

xt+1 = λxt + wt, x0 = 0, |λ| > 1, wt = ±1

Track the following process over a noisy channel

Encoder - Encode           causally,{wt} Decoder - Generate estimates {ŵτ |t}τ≤t

P e
t,d �

�
ŵt−d+1 �= wt−d+1, ŵτ |t = wτ , τ ≤ t− d

=⇒ |xt+1 − x̂t+1|t|2 ≤ K|λ|2d

E|xt+1 − x̂t+1|t|2 ≤ K
�

d≥0

P e
t,d|λ|2d

P e
t,d -  Earliest error happens at time t− d + 1

P e
t,d ≤ |λ|−(2+�)d, ∀ t, d ≥ doAnytime Reliability



bi ∈ {0, 1}nR, ci ∈ {0, 1}n

Let {µi} be the eigen values of F , then

R >
�

i:|µi|>1

log |µi|, β > η log max
i

|µi| =⇒ lim sup
t→∞

E|xt|η <∞
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...
...

...

b1

b2

bt

c1 = f1(b1)

c2 = f2(b1, b2)
b̂1|1

b̂1|2, b̂2|2

b̂1|t, . . . , b̂t|tct = ft(b1, . . . , bt)

...

z1

z2

zt

An encoder, decoder pair is said to be (R,β, do) anytime reliable if

P
�
b̂t−d+1|t �= bt−d+1

�
≤ K2−nβd, ∀ t, d ≥ do

Tree codes under maximum likelihood decoding are anytime reliable



Linear Tree Codes Exist




c1

c2
...
ct




=





G11 0 . . . . . .
G21 G22 0 . . .

...
...

...
...

Gt1 Gt,t−1 . . . Gtt









b1

b2
...
bt




, Gij ∈ {0, 1}n×k

or equivalently,





H11 0 . . . . . .

H21 H22 0 . . .

...
...

...
...

Ht1 Ht,t−1 . . . Htt









c1

c2
...
ct




=





0
0
...
0




, Hij ∈ {0, 1}(n−k)×n

Without additional structure, existence is not with high probability (because 
one needs to union bound both over decoding instants and delay).



The Toeplitz Ensemble

•   the entries of          (or         ) are chosen i.i.d Bernoulli(p)
•   this is a time-invariant infinite constraint length convolutional code
•   a code drawn from this ensemble is anytime reliable with a high  
    probability
•  because of time-invariance, only a union bound over delay is required
    which gives a high probability result

{Gi}





G1 0 . . . . . .
G2 G1 0 . . .
...

...
...

...
Gt Gt−1 . . . G1



 OR





H1 0 . . . . . .

H2 H1 0 . . .

...
...

...
...

Ht Ht−1 . . . H1





{Hi}



Toeplitz Ensemble,        : draw an infinite sequence                         
such that each entry of      is Bernoulli(p)

TZp

Gi

{G1, G2, . . . , Gt, . . .}

Bhattacharya Parameter, ζ =
�

z∈Z

�
p(z|0)p(z|1)

Theorem: For each rate,            and exponent,           such thatR > 0 β > 0

the probability that a randomly chosen code from         is                - anytime 
reliable is at least 

TZ 1
2

(R,β, do)
1− 2−Ω(ndo)

R < 1− log2(1 + ζ), β < H
−1(1−R)

�
log2

�
1
ζ

�
+ log2

�
21−R − 1

��

ζ = � ζ = 2
�

�(1− �)BEC(ϵ):          , BSC(ϵ): 

e.g., for BEC(ϵ), the Theorem guarantees anytime reliability for rates up to 
1-log2(1+ ϵ). This is the so called computational cut-off rate and is a consequence of 
using a union bound in the proof. These thresholds can be significantly improved using 
tighter techniques.
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Decoder for BEC

The Triangular Case...

•   Divide the transmitted codeword    into observed entries     and erased  
     entries
•   Then the parity check condition gives

•   So, maximum likelihood (ML) decoding over the BEC is just matrix
     inversion. If R < 1- ϵ, the above equation has a unique solution with high
     probability

c co

ce

Hc =
�

He Ho

� �
ce

co

�
= 0 =⇒ Hece = Hoco ≡ s

•        and       are lower triangular. So, even though      is a tall matrix, it will 
     most likely not have a full column rank. 
•   But can we recover the erased bits with a delay d? 

He Ho He



Efficient Decoder for BEC

Hece = s ≡
�

He,11 0
He,21 He,22

� �
ce,1

ce,2

�
=

�
s1

s2

�

1. For d
� = 1, 2, . . . , d, partition ce =

�
c
T
e,1 c

T
e,2

�T and

He =
�

He,11 0
He,21 He,22

�
, where ce,1 and ce,2 denote the erased

entries in the intervals [t− d + 1, t− d
�] and [t− d

� + 1, t] respectively.

2. Check whether
�

He,11

H
⊥
e,22He,21

�
has full column rank.

3. If so, solve for ce,1 from
�

He,11

H
⊥
e,22He,21

�
ce,1 =

�
s1

H
⊥
e,22s2

�

4. Increment t = t + 1 and continue



• If the position of the earliest uncorrected erasure is at time t-
d, then the algorithm  takes           time. 

• But the probability that there is an uncorrected erasure at time 
t-d is at most  

• So, the expected complexity per time instant is constant:

• Furthermore, the probability that the complexity at any given 
time instant exceeds           decays as  

• Remark: With feedback, encoding can also be done with 
constant expected complexity          

Decoding complexity

O(d3) O(2−nβd)

O(d3)

�

d≥1

Kd32−nβd

K2−nβd
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k=2, n=15, nβ=6.3162

k=3, n=15, nβ=4.7593

k=4, n=15, nβ=3.5329

k=5, n=15, nβ=2.5279

F =




2 1 0

0.25 0 1
−0.5 0 0





H =
�

1 0 0
�

G1 = I3

ut = −x̂t+1|t

λ(F ) = {2,−0.5, 0.5}

A Simulation

Higher rates provide a finer resolution of the measurements while larger exponent ensure that 
the controller’s estimate of the state does not drift away; however, we cannot have both.



1. Construct efficiently decodable tree codes for other classes of channels, e.g., BSC, 
AWGNC.

2. Study the tradeoff between rate and reliability to optimize system performance (e.g., 
LQR cost).
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