Open Experimental Platform and Challenge Problems Breakout

March 17, 2011

Attendees

- Tamer Nadeem, Old Dominion University
- Casey Alford, Embedded Systems Technology Inc.
- David Kuehn, USDOT Federal Highway Administration
- Steven Shladover, UCB PATH Program
- David Du, University of Minnesota
- Xenofon Koutsoukos, Vanderbilt University
- Rahul Mangharam, U Penn

- Adel Sadek, SUNY Buffalo
- Byungkyu "Brian" Park, Univ. of Virginia
- Chris van Buskirk, Vanderbilt University
- Ken Butts, Toyota Technical Center
- Jonathan Sprinkle, Arizona
- Tony Tsakiris, Ford
- Yilu Zhang, GM
- Tony Larsson, Halmstad Univ.
- Jeff Cook, Univ. of Michigan
- Shige Wang, GM

What's "Open"?

- Data (subj to human subjects approval)
- Inputs
- Experiments
 - Methodology
 - Results
 - Algorithms, tools, analysis
 - Design/development processes
 - Observations
- Code/Models
- Interfaces (incl. what to buy for integration)
- Time or Access to system and sources

State of the Art

- Existing OEPS:
 - Groovenet open source, downloadable
 - Transims open source
 - NS2 network simulator, supports V2I, V2V simulation, open source
 - NCTUNS short-range communication simulator, open source
 - Michigan test bed
 - C-VET UCLA vehicular test bed
 - Instrumented test bed on campus (vehicles, intersection) for human factors, collision avoidance, etc.; open to researchers; future plans to make available remotely using local university support; what components are needed and how should they be used?
 - C2 Wind Tunnel HLA-based
 - Matlab/Simulink/Stateflow integrated with NS2
 - Heterogenous simulations
 - Sites too (not just vehicles), and not always "easy open"
- Non-open platforms
 - TORC Tech (uses JAUS interfaces, no access to proprietary Ford/TORC data)

State of the Practice

- Localized development of open platforms (can be used by others, but results not broadcast well).
- Lots of repeated work.
- Lots of work to keep components working in integrated environment as other components change.
- Lots of OEM subsystem models but difficult to integrate efficiently into complete vehicle model.

OEP Limitations, Needs

- Who pays?
- Hard to go from experimental facilities to open information.
- Models
 - have critical assumptions, conditions, behaviors that don't work for all usages.
 - restricted based on experiment
 - simulation platforms of just vehicles (no traffic environment) or
 - subsystems of vehicles (e.g., powertrain, engine).
- Need
 - spectrum of platforms (subsystems to vehicle fleets).
 - to transfer information from experiment to simulation. Should information be shared. Do we need a central clearinghouse for data and models?
 - safe places to do experiments. OEM tracks usually "closed."
 - to agree on representative application/platform that all can use.
 - Flows down to design, test, implementation, etc.
 - Funnel idea what's included (Jonathan to add picture)
 - complete control for experimentation; representative systems to convince OEMs that tech is "ready"
 - maintenance of platforms that are developed so they stay useful going forward. Need organization?
- Burden of documentation. Who?

Challenges for OEP Impl

- Business case for OEMs to open up resources (e.g., tracks)
 - Who pays?
 - Who's responsible or liable?
- Extending participation/expansion
 - How dynamic are business agreements?
 - Can groups join late? How?
 - Keep it as open as possible to avoid these problems.
- Automated driving in dedicated lane with V2V and V2I communications.
- What's the reward for the developing institution?
 - Deep knowledge of subsystems
- Work force for institutionalization
- OEP useful to community

Challenge Problems

Goals

- "Goal"-oriented safety, energy
- Energy/fuel conservation
- No traffic death vehicle
- Vehicle recall identification/management to reduce costs
- Low(er) cost sensors for autonomy
- Learning from other experiments/design process/verification & validation

Enablers

- Cross-cutting
- Security and privacy (don't duplicate existing DOT work but address what is missing)
- Scalability of communications (and modeling refinements)
- Validating abstractions/models
- Suites of standard models
- Build/spec your simulation
- Black/white/grey box for certain components
- Solutions (i.e., demos that emerge from goals/enablers)
 - Cooperative automated driving
 - Collision avoidance
 - Real-time traffic congestion management
 - Shown extensions to non-passenger cars (trucks/buses)

OEP: Suggestions

- Work in the OEP *must* be precompetitive
- Approaches, and results, *must* be shared
- Work done on new feature functions
- Work is done a layer above proprietary info.
- Good results may result in auto manufacturer entering into more 1-to-1 agreements
- Sites, not just vehicle(s), must be part of OEP

Issues with OEP Tools and Methods

- Virtual vehicle platform
 - Content and fidelity driven by research questions
 - Subsystem replacement to change fidelity (need proper interfaces)
 - Validating abstractions/models
 - "May" come from validating experiments
- Learning from other experiments/design process/verification & validation
 - Suites of standard models
 - Build/spec your simulation
 - Black/white/grey box for certain components
- Methods
 - Checking non-functional requirements
 - Multi-level, traceability and interfaces at multiple levels
- Problems/Questions
 - Non-synchronous model refinement/evolution
 - Commercial or free models (e.g., CarSim)?
 - How many physical vehicles to start with?
 - Addressing interoperability (different manufacturers)

Research Roadmap and Milestones

- 2-3 years
 - Catalog of existing OEPs and components
 - Determination of Institutional model
 - Process to mature existing testbeds to institutional(s), or build new
- 3-5 years
 - First results validating approaches to challenge problems
- 10 years
 - Validated models for virtualization, "choose your system"
- 20 years
 - Extensions to other vehicle types
 - Robust models