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Abstract

This paper proposes a simplified hybrid model of a freight train equipped with an air brake. The

control of such a system and the enforcement of numerous safety constraints constitute a relevant

benchmark to evaluate tools for proving safety requirements in hybrid systems.

Category: industrial Difficulty: high

1 Introduction

In a wide range of applications, ubiquitous automatic controllers have been replacing human
operators. Automatic train operation (ATO), while not so well known as self-driving cars, has
also been widely studied and implemented in a few cases, such as in subways and monorails [8].
One main problem in ATO relies on the control of tractive and braking effort, where a desired
speed profile is to be tracked while satisfying constraints on the actuation and train acceleration.
Train braking in particular is a fairly complex process which takes place in a distributed way
at different points of the train cars.

Trains are typically equipped with different braking systems, depending on the characteris-
tics of the trains, loads, operating speed and expected traffic conditions, among others. In this
paper we focus on air brakes for two reasons: first, they represent a key actuator to ensure the
safety operation of a train. In fact, several serious train accidents can be tracked back to failures
in the air brake system (i.e., [7]). Second, describing its behaviour in an accurate way requires
a hybrid model, which poses a challenging problem from a control and verification perspective.
Air brakes date back to 1868 [5], and are mostly based on compressed air. Air brakes resort to
air pressure variations to command a change in the braking force. These brakes can be used as
service brakes, during regular operation, and also as emergency brakes.

Many modelling efforts are available in the literature (e.g., [9], [1]). In this report we propose
a simplified model of a train, of an air brake, and of the engine moving the train. While the
proposed models are fairly simplified, we believe they reflect the complexity and hybrid nature
of train systems and fit the purpose of the workshop. To the best of our knowledge, existing
ATO techniques do not approach the problem in a systematic way and overlook the hybrid
behaviour of the air brake.

The remainder of the paper is structured as follows: Section 2 describes the dynamics of the
train and the air brake. Section 3 defines the control specification as an optimisation problem
under safety requirements. Section 4 describes the provided code. Finally Section 5 proposes
several ways to increase the complexity the problem, both from a modelling perspective (via
model extensions to include more realistic aspects) and from a specification point of view.

2 A simplified model of a train with hydraulic brake

We consider a simplified model of a freight train and of an air brake. The goal is to obtain
a conceptually simple system that exhibits its hybrid nature and where key control issues are
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highlighted. In the proposed models, we neglect (among others) the effects of a distributed mass
and pull-traction forces that the wagons generate between each other, the effects that gravity
has on different parts of the train, and the distributed nature of the braking force. Likewise, we
ignore other braking subsystems that might be present in trains. Possible extensions to make
the simplified model more realistic are discussed in Section 5. The overall model is composed
of the nonlinear dynamics of the train, the dynamics of the engine, and the hybrid dynamics of
the brake.

2.1 Train model

We model the train as a point mass and consider the case where the train moves along a 1-
dimensional manifold. With ξ(t) we denote the position of the train at time t along the path,
and with v(t) we denote the speed of the train at time t. The power generated by the engine
is denoted by p(t). The speed of the train is affected by the power of the engine, the effects of
air and of rolling resistance, the force generated by the air brake, and the effect of gravity. The
effects of air and of rolling resistance is typically called propulsion resistance and, as discussed
in [6], its modulus can be modelled as a second order polynomial of the absolute value of
the speed of the train. The modulus of the propulsion resistance is denoted with µ(|v(t)|),
where |x| represents the absolute value of x. With b(t) we denote the magnitude of the force
generated by the air brake. The effect of gravity is modelled via the term −g sin(θ(ξ)), where
g is the gravitational acceleration and θ(ξ) is the angle of the path at point ξ with respect to
the horizontal line. The dynamics of the train can now be written as

ξ̇ =v (1)

v̇ =
1

M

(
f(p, v)− sgn(v)

(
µ(|v|) + b

)
− g sin(θ(ξ))

)
, (2)

where M represents the mass of the train, f(p, v) is the force generated by the engine, which
is a function of p(t) and v(t) as defined below, and sgn(·) is the sign function.1 For ease of
notation, time dependency is neglected in (1) and (2).

The force generated by the engine is inverse proportional to the speed of the train only for
speed values higher than a threshold V̄ . For speed values lower than V̄ , the maximum force
generated by the engine stays constant for constant power. A possible model for the force
generated by the engine can be written as

f(t) =


p(t)

V̄
if |v(t)| < V̄

p(t)

|v(t)|
otherwise

(3)

The power generated by the engine is bounded above by P̄ and below by P . In general, P
takes negative values since engines can be used as dynamic brakes. In the proposed simplified
model, the power of the engine follows a dynamic equation which can be written as:

ṗ(t) =

{
αud(t) if P < p(t) < P̄

0 otherwise,
(4)

where ud(t) is a control input bounded in the interval [−1, 1] and α > 0 is a constant that
depends on the characteristics of the engine.

1Let x be a real number, we define sgn(x) equal to −1 if x < 0, 0 if x = 0, and 1 if x > 0.
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Figure 1: Transitions among discrete states of the brake.

2.2 Brake model

The dynamics of the force generated by the brake is modelled as a hybrid system. The set of
discrete states of the brake is composed of three elements named Idle, Brake, and Release which
are associated with the indexes 0, 1, and 2, respectively. The discrete state is denoted with the
variable ζ(t). The continuous states of the brake model are the force of the brake b(t) and the
maximum force that the brake can generate, denoted with bMAX(t). The control input of the
brake is denoted with the variable ub(t) which is bounded in the interval [−1, 1].

When in Idle, the brake generates no force and it recharges itself. The maximum force that
the brake can generate increases over time up to the physical limit denoted with B̄. We can
then write:

ḃ(t) =0

ḃMAX(t) =

{
β if bMAX(t) < B̄

0 otherwise,

(5)

with β > 0 being determined by the characteristics of the brakes.
The brake moves from Idle to the Brake state when the control input ud(t) takes a value

greater than 0. When in the Brake state, the dynamics of the force generated by the brake is
modelled as

ḃ(t) =

{
γub(t) if b(t) < bMAX(t)

0 otherwise

ḃMAX(t) = 0.

(6)

for some γ > 0. The brake force can be increased by positive values of ub(t). When the force
is reduced, the brake moves to the Release state. In such a state, the brake keeps applying a
force to the train but its value can only decrease. The rate at which the brake reduces its force
is constant and, in the proposed model, cannot be controlled. Also, in the Release state, the
maximum brake force decreases at the same rate as the brake force b(t). The dynamics of the
brake force in the Release state can be modelled as

ḃ(t) =

{
−δ if 0 < b(t)

0 otherwise

ḃMAX(t) =− δ,

(7)
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where δ determines the recharging time for the air brake. The brake moves to the Idle state
only when b(t) reaches the zero value. Figure 1 shows the transitions among the discrete states
and the dynamics of the continuous states.

2.3 Combined/System model

As the system described in the previous sections includes continuous-time dynamics and
discrete-time events, we can rewrite the system as an impulsive system, using the formalism
discussed in [4]. Defining the continuous states as x = (ξ, v, p, b, bMAX)T , the joint continuous
and discrete states as q = (xT , ζ)T and the inputs as u = (ub, ud)T , the combined system can
be written as follows:

d
dt

(
x
ζ

)
=

(
F (x,u)

0

)
, for q ∈ C,(

x+

ζ+

)
=

(
x

ζ + 1 (mod 3)

)
, for q ∈ D,

(8)

where C ⊆ R5 defines the flow set and, in virtue of Figure 1, the jump set D set can be defined
as D = D1 ∪D2 ∪D3, with D1 = {q : ζ(t) = 1, ub(t) ≥ 0}, D2 = {q : ζ(t) = 2, ub(t) ≤ 0} and
D3 = {q : ζ(t) = 3, b(t) = 0}. Notice how the D set represents the guards in the state machine
described in Figure 1, and the C set defines the operating region of the physical system, where
the model herein described is valid. The map F can be defined from equations (1)-(7). The
system flows on C and experiences a jump on the set D. In this report we skip discussions on
hybrid time domains and the existence and uniqueness of hybrid solutions as it falls outside the
scope of this benchmark.

3 Control problem and safety requirements

The train control problem deals with the selection of a strategy to control the force generated
by the engine and the power generated by the brake. The goal of the control strategy is the
minimisation of the energy spent to reach a desired destination while also attempting to match
a given speed profile and enforcing the given safety requirements.

The speed profile is defined as a function v̄(ξ) over the interval [0, L], where L is the total trip
distance. In general, a variety of safety requirements must be enforced by ATO, e.g., maximum
pull-traction forces among wagons, maximum time that the engine and the brake can be used
at their maximum value and maximum and minimum speed of the train along the trajectory.
In this report, we focus on the maximum speed of the train over the length of the path which
we denote with V̂ (ξ).

With v(ξ;u, q(0)) we denote the speed of the train at the point ξ when the control action
is u and the initial state is q(0). The cost associated with u can be written as:

J(u, q(0)) =

∫ +∞

0

u(τ)ᵀRu(τ)dτ +

∫ L

0

(
v(ρ;u, q(0))− v̄(ρ)

)2
dρ, (9)

for some user-selected positive definite matrix R. The constraints to the control problem are
given by the equations modelling train and brake dynamics and by the safety speed constraints.

4



Benchmark problem: an air brake model for trains Parolini, Schuler, Anta

The optimal control problem can now be written as

min
‖u‖∞≤1

J(u, q(0)) (10)

s.t. (8) (11)

v(ξ;u, q(0)) ≤ V̂ (ξ). (12)

The challenge set by the proposed benchmark lies on both the selection of a suitable control
strategy and on the analysis of the enforcement of the safety constraints by the control strategy.

4 Implementation

A possible implementation of the train and brake model is given. The models are imple-
mented in Python. The code is composed by 4 files named: run me.py, brake.py, train.py,
trainpath.py.

The file run me.py is responsible for configuring the train, the path, and the brake with their
parameters, for executing the simulation, and generating the final graphs. The files brake.py

and train.py provide a possible implementation of the air brake and of the train models
previously discussed. The file trainpath.py can be used to generate test paths for the train.

The proposed Python implementation is provided as an example to facilitate the adoption of
the proposed benchmark. The code has been developed for the sole purposes of this workshop.
The authors are grateful for any help aimed to improve the code quality.

5 Model discussion and possible extensions

The model as discussed in Sections 2 and 3 is presented as a first attempt to model the complex
dynamics of a train equipped with an air brake as a hybrid model. In order to make the model
more realistic, the authors propose several possible extensions:

• The train is modelled as a point mass. A more realistic approach would be to model each
car of the train as a point mass and couple the individual cars by stiffness and damping
functions. An even more complex model would describe the train by a distributed mass
model.

• With increasing production of natural gas, duel fuel engines become more attractive for
trains as well. When a dual fuel engine is modelled correctly, also the train model itself
becomes a hybrid system.

• In the proposed models, the same slew rates for all input control values are considered.
Different slew rates for the different actuators can be considered.

• The actual force used by the brake is not known exactly. Uncertainties of up to 50% of
the nominal value are possible. A possible extension, is therefore to include an uncertainty
description to the brake model.

• The model as presented does not consider any delays for the brake actuation. A more
realistic approach however, would be to use delays to model how the force propagates
along the train. This becomes more relevant when the train is modelled as a distributed-
mass system. Additionally, air brakes cannot be used continuously in reality for a long
time, since they heat up and lose efficiency. To model these constraints, bounds on the
maximum time the brake is used can be added to the model.

5



Benchmark problem: an air brake model for trains Parolini, Schuler, Anta

In addition to the model extensions discussed previously, the control problem itself can also be
made more complex by adding additional optimisation criteria such as maximum pull-tracking
forces among the wagons or other requirements discussed in Section 3.
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