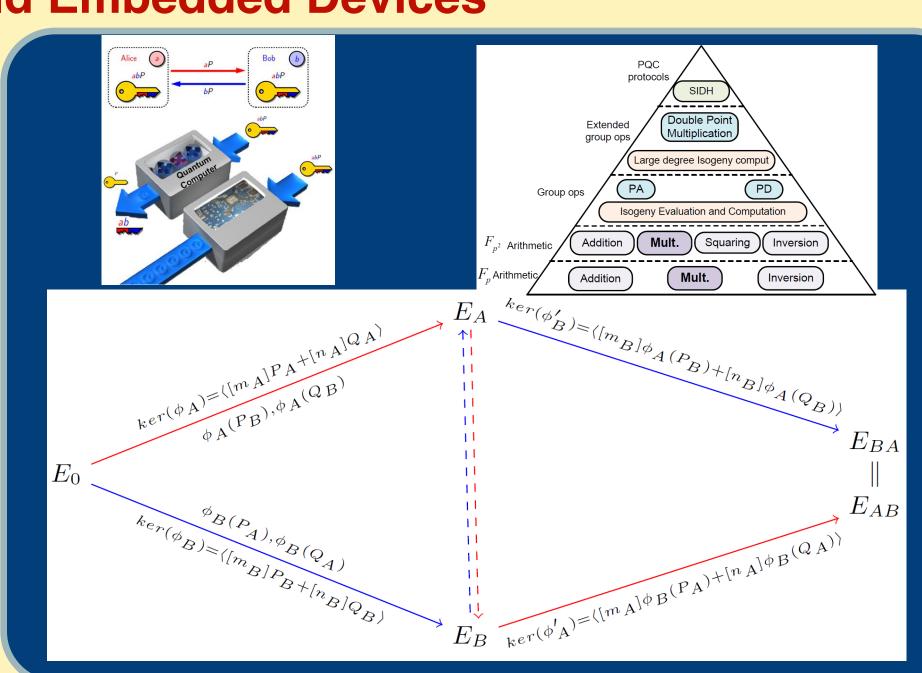
Post-Quantum Cryptography

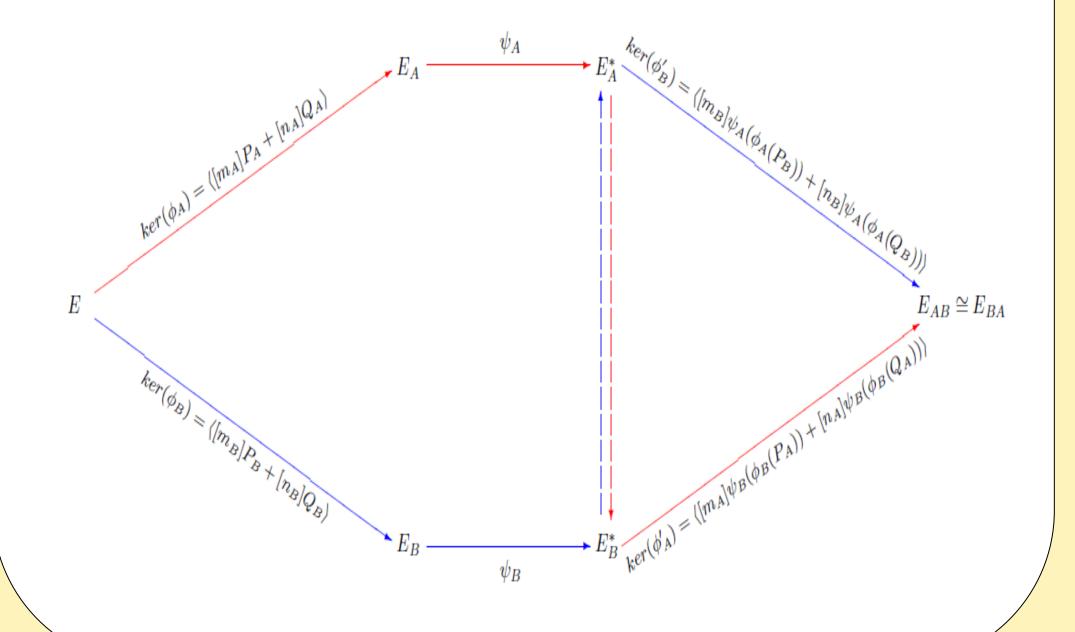
PI: Reza Azarderakhsh, Florida Atlantic University

http://faculty.eng.fau.edu/azarderakhsh/research/

Design, Implementation, and Analysis of Quantum-Resistant Algorithms on Smart Handheld Embedded Devices

- •The goal of this project is to assess feasibility of designing and implementing isogeny-based cryptography on emerging embedded systems.
- •Outcomes from this research will enable design of quantum-resistant security protocols and identify their security and performance on smart handheld devices using ARM-powered processors.




Table 1: Comparison of key sizes (in bits) for different PQC algorithms for 128-bit security level [14]

Algorithm	NTRU	Ring-	SPHINCS	Hash	McEliece	SIDH	SIDH	RSA	ECC
	[43]	LWE [62]	[16]	[36]	[10]	[45]	Compr. [6]	nsa	
Public Key	4,939	7,498	1,024	7,296	1,991,880	6,144	3,072	3,072	256
Private Key	1,398	14,000	1,024	152	1,537,536	768	768	3,072	256
Signature		5,600	41,984	19,608	2,960	9,216	9,216	24,576	768

¹The PI's prior work with key compression. Note that the calculation in Wikipedia [72] is incorrect.

To study the use of new families of isogeneis in designing and implementing quantum-resistant cryptosystems.

- •Analyze the security of isogeney-based cryptosystems from the computational standpoint.
- •Improve the performance isogeny algorithms for quantum setting
- Approach
 - Extreme need for high-speed computations of post-quantum crypto.
 - Explore lower-level and finite field arithmetic computations
 - Investigate time efficiency of implemntations.
- Fastest implementations of SIDH on ARM processors.
- Key compression cut the key size by half

		Beag	le Boa	ard Bla	ick (AR	M v7) Corte	ex-A8 a	at 1.0 G	Hz using (
Field	\mathbb{F}_p [cc]					\mathbb{F}_{p^2}	2 [cc]	Key Exch. $[cc \times 10^3]$			
Size	A	S	M	mod	I	Ä	\hat{S}	\dot{M}	Î	Alice	Bob
p_{512}	115	1866	2295	3429	40100	1241	12229	14896	72400	483,968	514,786
p_{768}	142	3652	4779	6325	71500	1404	23167	28459	135400	1,406,381	$1,\!525,\!215$
p_{1024}	168	5925	8202	10150	111900	1558	38046	46891	211400	3,135,526	3,367,448
Beagle Board Black (ARM v7) Cortex-A8 at 1.0 GHz using ASM and NEON											
Field	\mathbb{F}_p [cc]				\mathbb{F}_{p^2} [cc]				Key Exch. $[cc \times 10^3]$		
Size	A	S	M	mod	I	Ä	\hat{S}	\dot{M}	\hat{I}	Alice	Bob
p_{512}	70	718	953	962	40100	279	4445	6736	52756	216,503	229,206
p_{1024}	120	2714	3723	3956	111900	375	15714	23682	150795	1,597,504	1,708,383

Authenticated Key-exchange based on Isogenies on elliptic curves

Digital Signature based on isogenies on elliptic curves

Interested in meeting the PIs? Attach post-it note below!

