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I. THE NEED FOR PRECISE CONTROL OF TIME

In a cyber-physical system (CPS) [8], timing contributes to
correctness, not just performance. Better average-case per-
formance may improve the user experience, but consistently
meeting deadlines may be key to safe behavior. Yet most
programming languages, such as C or C++, provide no control
over timing. The execution time of software is a complex,
brittle function of both the software itself and the hardware
on which it runs [15].

As a consequence, hard real-time systems are not portable.
Costly testing, verification, and certification must consider
the details of how software interacts with the hardware; any
change in the hardware or software can have unpredictable
effects on timing, forcing all this work to be repeated. For
example, a small change in a cache replacement policy could
lead to thrashing in an inner loop and much slower execution.

Software timing is brittle even on a single platform; caches,
branch predictors, and complex pipeline interactions enable
small code changes to strongly affect global timing. And it is
not just the the program’s source code; using a compiler op-
timizer, changing a linker, or changing the operating system’s
scheduling policy can cause big changes in timing.

Modeling languages for CPS have long recognized the need
to precisely model time and treat it as a first-class entity.
Modelica [11], Simulink [10], and Ptolemy [6] can precisely
specify and simulate the timing behavior of both the physical
and computational (cyber) parts.

Many of these modeling environments are even able to
compile models into C or similar low-level platform-dependent
code, but few execution platforms are able to guarantee the
timing behavior of the generated code. This is regrettable;
designers carefully specify and analyze the timing behavior of
their systems, yet existing implementation schemes essentially
discard this and force designers to validate the timing behavior
of their implementations through testing.
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We believe both hardware and software platforms must
change to provide timing that can be controlled as precisely
as logical function.

II. HARDWARE CONSIDERATIONS

Modern computer architecture focuses on increasing overall
performance, often at the expense of worst-case behavior or
increased unpredictability. Deeper pipelines improve through-
put at the expense of increasing the amount of time it takes
to flush and restart a pipeline when a branch is mispredicted.
Branch predictors reduce the probability of misprediction at
the expense of additional, largely unpredictable, architectural
state. Caches can greatly reduce average memory latency,
but often increase the latency of a miss. Complex cache re-
placement strategies improve performance but, again, increase
unpredictable architectural state.

Predictability is easy to achieve by itself—most micropro-
cessors from the 1970s and 80s were completely predictable
because they were very simple (and fairly low-performance);
the real challenge is making a high-performance predictable
processor.

In part due to our proposal for precision times (PRET)
machines [5], we and others have been developing predictable
hardware platforms [9], [13], [1]. In our own work [4], [9],
we used a thread-interleaved pipeline (to avoid difficult-to-
analyze pipeline hazards), a predictable DRAM controller, and
scratchpad memories [2] instead of caches. We showed such
an approach can greatly simplify worst-case execution time
analysis.

But much work remains to be done. Main memory (DRAM)
latency, which can be hundreds of cycles in today’s technology,
is a fundamental stumbling block. Any reasonably high-
performance processor must store frequently accessed data in
a smaller memory such as a cache or a scratchpad, yet caches
greatly increase the amount of architectural state that must be
tracked to predict the execution time of sequences of code.

Software control of a memory hierarchy seems necessary
for reasonable performance and predicability, yet doing so
using classical techniques such as DMA transfers seems likely
to add significant performance overheads because it would
add management code to the software’s critical path. While
some mixed alternatives have been proposed, such as Whitham
and Audsley’s scratchpad MMU [14], the problem is hardly
considered solved.



III. SOFTWARE CONSIDERATIONS

Merely providing hardware with predictable timing behavior
is not enough—the software toolchain must support time as
a first-class entity throughout. We call this solution—where
time is a correctness criterion—a precision timed (PRET)
infrastructure.

At the lowest level of abstraction, designers need to be
able to specify timing behavior and expect it to be obeyed
as precisely as arithemtic is now. We would never accept a
software environment that thinks 1+ 1 = 3; why should we
accept one that allows 1s+1s = 3s?

Bui et al. [3] describe a software construct called meet the
final deadline (MTFD) that has this character. A code block
is assigned a deadline and the program will refuse to run if
it cannot meet the deadline. At lowest level of abstraction,
MTFD together with get time (GT) and delay until (DU)
are realized as processor instructions, as illustrated in the
following extended ARM ISA assembly code example.

1 gt r1, r2 Get time in ns (64 bits)
2 ...computation... Perform computation
3 ldr r3, =10000 Increase the timer with 10us
4 adds r2, r2, r3
5 adc r1, r1, #0
6 mtfd r1, r2 Takes at most 10us
7 du r1, r2 Delay until, takes at least 10us

Timing instructions are shown in bold. Note how the absolute
time (line 1) is incremented with the relative deadline of 10µs
(lines 3-5). MTFD (line 6) specifies an upper bound of the
execution time and delay until (line 7) makes sure that the
computation takes at least 10µs.

The software toolchain must check such timing instructions
and provide guarantees. If MTFD instructions appear in the
executable code as shown, the linker-loader may reject a
program if it can’t guarantee the timing. This approach is
inspired by Necula’s proof carrying code [12], where the
verification process is divided into an offline certification stage
followed by an online validation stage.

Static verification of MTFD constraints means computing a
safe upper bound of WCET and comparing it to the constraint.
Traditionally, the main challenge of WCET analysis is to
compute a tight upper bound, which includes both loop bound
detection, infeasible path detection, and low level machine
timing analysis [15]. Recent work on WCET-aware compi-
lation [7], on the other hand, utilizes compiler optimization
phases to minimize WCET instead of the average case execu-
tion time. We propose a compiler that attempts to minimize
the average execution time of blocks that are not constrained.
That is, we view the compiler optimization problem as a
traditional compiler problem with constraints on the MTFD
blocks. Hence, the challenge is not to minimize WCET, but
to make WCET bounds tight and close to MTFD.

Various modeling languages have different ways of express-
ing timing constraints. Creating a new compiler for each mod-
eling language—with precision time capabilities—is impracti-
cal. We propose instead to define an intermediate language to
which various modeling languages may be compiled. Such an

intermediate language must have a well-defined semantics that
encompasses both function and timing. At the highest level of
abstraction, our intermediate language will take the form of
a timed extension to C, called Precision Timed C (ptC). For
example, here is a loop for a periodic control system in ptC:
int first = 1;
loopin(20ms){
if(!first) actuate_data();
first = 0;
sense_data();
control_computation();

}

Actuation takes place every 20 ms: an explicit constraint.
Although the exposed timing abstractions of ptC make it

easier for various modeling languages to be compiled with
precision time, the intermediate language would be only
marginally useful if it also exposed all details of the PRET
machines. In particular, scratchpad allocation schemes must be
abstracted away, yet static or dynamic memory management
decisions have a profound affect on WCET analysis and thus
also for MTFD. It follows that a key challenge for the PRET
infrastructure is to design the toolchain such that MTFD
constraints are guaranteed to hold, average case performance
of non MTFD blocks are optimized, and limited memory
resources are utilized efficiently.
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