

Provably-safe interventions for Human-Cyber-Physical Systems (HCPS)

Award #1565529 (April 1, 2016) to Sam Burden, University of Washington, Seattle

Challenge:

- interact with the world, e.g. cars help drivers, planes help pilots, robots help surgeons
- must engineer safe interactions in the resulting human-cyber-physical system (HCPS) Solution:
- interaction between a human and CPS gives rise to a game
- bridging theories of games, CPS, and human motor control, we propose a framework for engineering safe HCPS

In robot teleoperation, a human operator interacts • humans increasingly use CPS to in closed-loop with a remote robot while the robot adapts to the human safe interventions in robot teleoperation require predictive models for closed-loop interaction

Scientific Impact:

- design principles for robot teleoperation interfaces
- paradigm for provably-safe closed-loop interactions in HCPS

Broader Impacts:

- provably-safe enhanced safety features in semi-autonomous cars
- dynamic and dexterous robot proxies for first responders
- brain-computer interface for assistive orthotics / exoskeletons

Sam Burden **Assistant Professor Electrical Engineering** University of Washington, Seattle http://faculty.uw.edu/sburden

Robinson, Scobee, Burden, Sastry. Dynamic Inverse Models in Human-Cyber-Physical Systems. Proceedings of the SPIE Conference on Micro-Nanotechnology Sensors, Systems, and Applications, no. 9836-68, 2016. Nothwang, Robinson, Burden, McCourt, and Curtis. The human should be part of the control loop? Proceedings of IEEE Resilience Week, 2016.

Roth, Burden. Toward experimental validation of a model for human sensorimotor learning and control in teleoperation. Proceedings of the SPIE Conference on Micro-Nanotechnology Sensors, Systems, and Applications, 2017.