
NSF Secure and Trustworthy Cyberspace Inaugural Principal Investigator Meeting
Nov. 27 -29th 2012

National Harbor, MD

Interested in meeting the PIs? Attach post-it note below!

Introduction
Recent differentially private algorithms have allowed for a significant improvement of error rates by adapting to properties of the input data. These so-called
data-dependent algorithms have different error rates for different inputs. There is now a complex and growing landscape of algorithms, without a clear winner that
can offer low error over all datasets. As a result, the best possible error rates are not attainable in practice, because the data curator cannot know which algorithm
to select prior to actually running the algorithm. This motivates the problem of Algorithm Selection. We propose Pythia an end-to-end differentially private
meta-algorithm for Algorithm Selection. Using Pythia, data curators do not have to understand available algorithms, or analyze subtle properties of their input
data, but can nevertheless enjoy reduced error rates that may be possible for their inputs.

Algorithm Selection
Given an input (W, x), a desired privacy parameter ϵ and a set of DP
algorithms A our goal is to select an algorithm A* from A to answer W
on x.

Desiderata:
a) Differentially Private - any use of input data must be included in an

end-to-end privacy guarantee.
b) Competitive - solutions to Algorithm Selection should offer low error rates

for arbitrary inputs.
c) Agnostic - algorithms in A should be treated as black boxes - i.e., the

curator shouldn’t worry about the internal workings of different algorithms.

We measure competitiveness via regret - the ratio between an algorithm’s error and
the best possible error on that input.

Pythia: Algorithm Selection for Differential Privacy
Ios Kotsogiannis†, Ashwin Machanavajjhala† (PI), Gerome Miklau✣ (PI), Michael Hay‡ (PI)
† Duke University, ✣ University of Massachusetts Amherst, ‡ Colgate University

Pythia Overview
Pythia is an end-to-end differentially private meta-algorithm for
achieving near-optimal error rates using a suite of available privacy
algorithms.

Pythia works in three steps.
1. Extracts a set of feature values from the given input.
2. Applies the extracted features on feature-based algorithm selector (FAS).
3. Runs the selected algorithm A* on the given input.

The success of Pythia depends on the FAS. We developed Delphi, a task
specific method that constructs a FAS.

Algorithm Selection

 Run A* ϵ
2

WD

A* Algorithm

Sensitive
Database

ϵ

Pythia

Private Answers
of Queries on
Sensitive DB

Workload
of Queries

Feature Extractor

ϵ
1

WD

Feature-based
Algorithm
Selector

An example of a Feature-based Algorithm
Selector

Optimizations
Delphi allows for both workload and privacy budget optimizations at training time.

- Workload optimization: Replicating training examples for every possible workload for a given task
would make training inefficient. Hence, we associate tasks with a set of representative workloads and
Delphi generates training instances whose workloads belong in the set of representative workloads.

- Privacy budget optimization: Delphi could have trained different trees for different privacy budget
values, that either requires upfront knowledge of ε, or training an infinite amount of trees. Instead,
Delphi learns a FAS for a single value of epsilon, and at run-time Pythia makes use of the scale/epsilon
exchangeability property of the algorithms to correctly traverse the FAS. Under asymptotic conditions
we can show that this technique is equivalent to training for different ε values.

Pythia allows for the following deployment optimizations.
- Budget reallocation: The feature extractor part of Pythia spends some privacy budget to extract a set

of features from the input. It might be the case that some of those features will never be used in
traversing the FAS. When this is the case, Pythia recovers the privacy budget spent on the unused
features and instead increases the privacy budget used to run the selected algorithm

- Post-processing via noisy features: The true features of a dataset impose hard constraints on the
noisy answer of a workload on that dataset. We use the noisy features to construct a more relaxed
convex space and project the noisy answer to that space.

Experimental Setup
We consider 2 tasks: 1D and 2D range queries. We instantiate Pythia once per task. We
consider 2 use cases: range query answering, and building a naive bayes classifier.
Pythia’s training is always done on a disjoint set of input datasets than the ones that it is
evaluated on. Overall we have 1080 inputs for the 2D task and 980 for the 1D task.

Range Queries: We evaluate the performance of DP algorithms for different range query
workloads for all the inputs of each task.
Naive Bayes Classifier: In an NBC a number of histograms are extracted from the dataset,
which are used to perform classification. Extracting these histograms via Differential Privacy
ensures the overall privacy of the system.

Use Case: Naive Bayes Classifier

Use Case: Range Queries

Beyond PythiaRegret Based Learning

Our novel learning method outperforms the
standard method (Gini) as well as other methods
we tested against.

Skin Dataset: 7 histograms
extracted

We evaluate the performance in
terms of misclassification rate.
Each bar in the plots denotes a
different strategy of extracting the
sensitive histograms.

Due to the heterogeneous nature
of the extracted histograms Pythia
achieves a near-optimal
misclassification rate for a
differentially private NBC. Credit Dataset: 47 histograms

extracted

Pythia is just one example of error optimization in
Differential Privacy for low dimensional inputs.
Building a universal optimizer for answering
workloads under differential privacy is a natural
forward direction.

Automatic extraction of features from inputs will
provide insights into the conditions under which
existing algorithms work well, and may facilitate the
development of new specialized algorithms.

Due to the differences of
the inputs Pythia always
outperforms the best ‘blind
choice’ strategy for both
the 1D and the 2D tasks.

Training

Task

Delphi:
Pythia Constructor

Representative
Workloads

 ...

Public
Databases

 ...

DP Algorithms
Repository

 ...

Feature Extractor
Features Used

Features Sensitivity

Feature-based
 Algorithm Selector

Choice Matters
In “Principled Evaluation of Differentially Private Algorithms using DPBench”, Hay et.
al demonstrated that the accuracy of differentially private algorithms depends on
characteristics of the input i.e., the workload of queries, the sensitive dataset, and
the privacy parameter.

- “One size fits all” does not apply
to DP algorithms.

- The curator is burdened with the
dilemma of choice.

- Input characteristics are not
known a-priori. Even if they
were using them might violate
privacy.

Delphi: Learning a Feature-based Algorithm Selector
Delphi is the process that builds a FAS that is used by Pythia for performing algorithm selection. Our goal with Delphi is to produce a FAS that is: (a) efficient, (b) highly
interpretable, and (c) reusable. Towards these goals, Delphi’s design is based on the following key ideas:

Baseline Approaches
Informed Decision

Run all differentially private algorithms on target input, check their empirical
error rates, and choose the one with the least error.

Private Informed Decision
 Follow Informed Decision, but add appropriate noise to the computed
error rates.

Private CompetitiveAgnosticPrivate CompetitiveAgnostic

Blind Choice
Arbitrarily choose an algorithm and use it to answer all the
input tasks.

Private CompetitiveAgnostic

Data Independence
Promotes reusability and ease of use.

Rule-based Selector
Allows for high model interpretability, robust
performance w.r.t. outliers, and fast runtime.

Regret-based Learning
Standard classification treats all mispredictions as equally bad. Delphi does not distinguish between
algorithms with similar regrets (since these would all be good choices).

