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Introduction
Recent  differentially private algorithms have allowed for a significant improvement of error rates by adapting to properties of the input data. These so-called 
data-dependent algorithms have different error rates for different inputs. There is now a complex and growing landscape of algorithms, without a clear winner that 
can offer low error over all datasets. As a result, the best possible error rates are not attainable in practice, because the data curator cannot know which algorithm 
to select prior to actually running the algorithm. This motivates the problem of Algorithm Selection. We propose Pythia an end-to-end differentially private 
meta-algorithm for Algorithm Selection. Using Pythia, data curators do not have to understand available algorithms, or analyze subtle properties of their input 
data, but can nevertheless enjoy reduced error rates that may be possible for their inputs.

Algorithm Selection
Given an input (W, x), a desired privacy parameter ϵ and a set of DP 
algorithms A our goal is to select an algorithm A* from A to answer W 
on x.

Desiderata:
a) Differentially Private - any use of input data must be included in an 

end-to-end privacy guarantee.
b) Competitive - solutions to Algorithm Selection should offer low error rates 

for arbitrary inputs.
c) Agnostic - algorithms in A  should be treated as black boxes - i.e., the 

curator shouldn’t worry about the internal workings of different algorithms.

We measure competitiveness via regret - the ratio between an algorithm’s error and 
the best possible error on that input. 
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Pythia Overview
Pythia is an end-to-end differentially private meta-algorithm for 
achieving near-optimal error rates using a suite of available privacy 
algorithms. 

Pythia works in three steps. 
1. Extracts a set of feature values from the given input.
2. Applies the extracted features on feature-based algorithm selector (FAS).
3. Runs the selected algorithm A* on the given input.

The success of Pythia depends on the FAS. We developed Delphi, a task 
specific method that constructs a FAS. 
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Optimizations
Delphi allows for both workload and privacy budget optimizations at training time.

- Workload optimization: Replicating training examples for every possible workload for a given task 
would make training inefficient. Hence, we associate tasks with a set of representative workloads and 
Delphi generates training instances whose workloads belong in the set of representative workloads.

- Privacy budget optimization: Delphi could have trained different trees for different privacy budget 
values, that either requires upfront knowledge of ε, or training an infinite amount of trees. Instead, 
Delphi learns a FAS for a single value of epsilon, and at run-time Pythia makes use of the scale/epsilon 
exchangeability property of the algorithms to correctly traverse the FAS. Under asymptotic conditions 
we can show that this technique is equivalent to training for different ε values.

Pythia allows for the following deployment optimizations.
- Budget reallocation: The feature extractor part of Pythia spends some privacy budget to extract a set 

of features from the input. It might be the case that some of those features will never be used in 
traversing the FAS. When this is the case, Pythia recovers the privacy budget spent on the unused 
features and instead increases the privacy budget used to run the selected algorithm

- Post-processing via noisy features: The true features of a dataset impose hard constraints on the 
noisy answer of a workload on that dataset. We use the noisy features to construct a more relaxed 
convex space and project the noisy answer to that space. 

Experimental Setup
We consider 2 tasks: 1D and 2D range queries. We instantiate Pythia once per task. We 
consider 2 use cases: range query answering, and building a naive bayes classifier.
Pythia’s training is always done on a disjoint set of input datasets than the ones that it is 
evaluated on. Overall we have 1080 inputs for the 2D task and 980 for the 1D task.

Range Queries: We evaluate the performance of DP algorithms for different range query 
workloads for all the inputs of each task.
Naive Bayes Classifier: In an NBC a number of histograms are extracted from the dataset, 
which are used to perform classification. Extracting  these histograms via Differential Privacy 
ensures the overall privacy of the system.

Use Case: Naive Bayes Classifier

Use Case: Range Queries

Beyond PythiaRegret Based Learning

Our novel learning method outperforms the 
standard method (Gini) as well as other methods 
we tested against.

Skin Dataset: 7 histograms 
extracted

We evaluate the performance in 
terms of misclassification rate.
Each bar in the plots denotes a 
different strategy of extracting the 
sensitive histograms.

Due to the heterogeneous nature 
of the extracted histograms Pythia 
achieves a near-optimal 
misclassification rate for a 
differentially private NBC. Credit Dataset: 47 histograms 

extracted

Pythia is just one example of error optimization in 
Differential Privacy for low dimensional inputs. 
Building a universal optimizer for answering 
workloads under differential privacy is a natural 
forward direction.

Automatic extraction of features from inputs will 
provide insights into the conditions under which 
existing algorithms work well, and may facilitate the 
development of new specialized algorithms.

Due to the differences of 
the inputs Pythia always 
outperforms the best ‘blind 
choice’ strategy for both 
the 1D and the 2D tasks.
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Choice Matters
In “Principled Evaluation of Differentially Private Algorithms using DPBench”, Hay et. 
al demonstrated that the accuracy of differentially private algorithms depends on 
characteristics of the input i.e., the workload of queries, the sensitive dataset, and 
the privacy parameter.

- “One size fits all” does not apply 
to DP algorithms.

- The curator is burdened with the 
dilemma of choice.

- Input characteristics are not 
known a-priori. Even if they 
were using them might violate 
privacy.

Delphi: Learning a Feature-based Algorithm Selector
Delphi is the process that builds a FAS that is used by Pythia for performing algorithm selection. Our goal with Delphi is to produce a FAS that is: (a) efficient, (b) highly 
interpretable, and (c) reusable. Towards these goals, Delphi’s design is based on the following key ideas:

Baseline Approaches
Informed Decision

Run all differentially private algorithms on target input, check their empirical 
error rates, and choose the one with the least error.

 

Private Informed Decision
 Follow Informed Decision, but add appropriate noise to the computed 
error rates.

Private CompetitiveAgnosticPrivate CompetitiveAgnostic

Blind Choice
Arbitrarily choose an algorithm and use it to answer all the 
input tasks. 

Private CompetitiveAgnostic

Data Independence
Promotes reusability and ease of use.

Rule-based Selector
Allows for high model interpretability, robust 
performance w.r.t. outliers, and fast runtime.

Regret-based Learning
Standard classification treats all mispredictions as equally bad. Delphi does not distinguish between 
algorithms with similar regrets (since these would all be good choices).


