The Open-Source TEXPLORE Code Release for Reinforcement Learning on Robots

ToODD HESTER AND PETER STONE

The University of Texas at Austin
Austin, TX 78712 USA
{todd,pstone }@cs.utexas.edu

ey

Learning Agents Research Group
The Unienty o Texon ot Autin

ABSTRACT

e Applying RL to robots could enable them to learn many
useful tasks

e Learning on robots presents four specific challenges for
RL

o The TEXPLORE algorithm addresses all four challenges
e TEXPLORE is released as an open-source ROS repository

o It is easy to integrate TEXPLORE with robots already run-
ning ROS

Robot Learning Challenges

1. Learning algorithm must learn in very few actions (be
sample efficient)

2. Learning algorithm must take actions continually in real-
time (while learning)

3. Learning algorithm must handle continuous state

4. Learning algorithm must handle delayed actions

Motivation

e Robots have the potential to solve many problems

o We need methods for them to learn and adapt to new
situations

The TEXPLORE Algorithm

1. Limits exploration to be sample efficient
2. Selects actions continually in real-time
3. Handles continuous state

4. Handles actuator delays

Available publicly as a ROS package:
www.ros.org/wiki/rl-texplore-ros-pkg

Challenge 3: Continuous State

x>3

AN
ANIVAN

) S50V SV 5

o Use regression trees to model continuous state
o Each tree has a linear regression model at its leaves

e Discretize state space for value updates from UCT, but
still plan over continuously valued states

Reinforcement Learning

State s, Action a
Reward r

[Environment]

e Value function RL has string of positive theoretical re-
sults [Watkins 1989, Brafman and Tennenholtz 2001]

e Could be used for learning and adaptation on robots
e Model-free Methods:

— Learn a value function directly from interaction
with environment

- Can run in real-time, but not very sample efficient
e Model-based Methods:

— Learn model of transition and reward dynamics
- Update value function using model (planning)

- Can update action-values without taking real ac-
tions in the world

Velocity Control of an Autonomous Vehicle

e Upgraded to run autonomously by adding shift-by-wire,
steering, and braking actuators.

e 10 second episodes (at 20 Hz: 200 samples / episode)
o State:

— Current Velocity

— Desired Velocity

— Accelerator Pedal Position
— Brake Pedal Position

e Actions: Do nothing, Increase/decrease brake position
by 0.1, Increase/decrease accelerator position by 0.1

e Reward: -10.0 * velocity error (m/s)

Challenge 1: Sample Efficiency

o Treat model learning as a supervised learning problem

— Input: State and Action

— Output: Distribution over next states and reward

Factored model: Learn a separate model to predict each
next state feature and reward

Decision Trees: Split space into regions with similar dy-
namics

x>3

/N

y<7 X=6

NN
) & &0

Random Forest: Average predictions of m trees

Acting greedily w.r.t. the average model balances predic-
tions of optimistic and pessimistic models

Limits the agent’s exploration to state-actions that ap-
pear promising, while avoiding those which may have
negative outcomes

Challenge 2: Real-Time Action

7

Remove Update Model Swap
Experiences M with Model
from updateList Experiences Pointers

O\ Model Learning Thread

updateList I =D Perform
[[agemstate —p| Rollout from

agentState

Planning Thread

|

Add Return

Sets as
<s,a,s\r> —=> I:> Acnon lrom
[f [to updatelList] [agontState)
Action Thread

Agent

State s,

Reward r
Environment

e Model learning and planning on parallel threads

Action a

e Use sample-based planning (anytime)

e Mutex locks on shared data

Challenge 4: Actuator Delays

o Delays make domain non-Markov, but k-Markov

o Provide model with previous k actions (Similar to U-Tree
[McCallum 1996])

o Trees can learn which delayed actions are relevant

e UCT can plan over augmented state-action histories eas-
ily

e Would not be as easy with tabular models or dynamic
programming

Using ROS

State-Reward
Msg

[RL Interface Node]

o &

TEXPLORE sends action messages and receives state-
reward messages

Interface node translates actions to actuator commands
and translates sensor information into state-reward

No need to touch the TEXPLORE code, simply subscribe
to and publish the correct messages

Learning on the Autonomous Vehicle

Physical Vehicle Velocity Control from 2 to 5 m/s

l JT;;E;;;EEE}_

Average Reward

10
Episode Number

o Learns the task within 2 minutes of driving time

Conclusion

e TEXPLORE can:

1. Learn in few samples
2. Act continually in real-time
3. Learn in continuous domains

4. Handle actuator delays

o TEXPLORE code has been released as a ROS package:
www.ros.org/wiki/rl-texplore-ros-pkg

