The Open-Source TEXPLORE Code Release for Reinforcement Learning on Robots

TODD HESTER AND PETER STONE

The University of Texas at Austin Austin, TX 78712 USA {todd,pstone}@cs.utexas.edu

ABSTRACT

- Applying RL to robots could enable them to learn many useful tasks
- Learning on robots presents four specific challenges for
- The TEXPLORE algorithm addresses all four challenges
- TEXPLORE is released as an open-source ROS repository
- It is easy to integrate TEXPLORE with robots already running ROS

Motivation

- Robots have the potential to solve many problems
- We need methods for them to learn and adapt to new situations

Reinforcement Learning

- Value function RL has string of positive theoretical results [Watkins 1989, Brafman and Tennenholtz 2001]
- Could be used for learning and adaptation on robots
- Model-free Methods:
 - Learn a value function directly from interaction with environment
 - Can run in real-time, but not very sample efficient
- Model-based Methods:
 - Learn model of transition and reward dynamics
 - Update value function using model (planning)
 - Can update action-values without taking real actions in the world

Velocity Control of an Autonomous Vehicle

- Upgraded to run autonomously by adding shift-by-wire, steering, and braking actuators.
- 10 second episodes (at 20 Hz: 200 samples / episode)
- State:
 - Current Velocity
 - Desired Velocity
 - Accelerator Pedal Position
 - Brake Pedal Position
- Actions: Do nothing, Increase/decrease brake position by 0.1, Increase/decrease accelerator position by 0.1
- Reward: -10.0 * velocity error (m/s)

Robot Learning Challenges

- Learning algorithm must learn in very few actions (be sample efficient)
- 2. Learning algorithm must take actions **continually** in real-time (while learning)
- 3. Learning algorithm must handle **continuous** state
- 4. Learning algorithm must handle delayed actions

The TEXPLORE Algorithm

- 1. Limits exploration to be sample efficient
- 2. Selects actions continually in real-time
- 3. Handles continuous state
- 4. Handles actuator delays

Available publicly as a **ROS package**: www.ros.org/wiki/rl-texplore-ros-pkg

Challenge 1: Sample Efficiency

- Treat model learning as a supervised learning problem
 - Input: State and Action
 - Output: Distribution over next states and reward
- Factored model: Learn a separate model to predict each next state feature and reward
- Decision Trees: Split space into regions with similar dynamics

- Random Forest: Average predictions of m trees
- Acting greedily w.r.t. the average model balances predictions of optimistic and pessimistic models
- Limits the agent's exploration to state-actions that appear promising, while avoiding those which may have negative outcomes

Challenge 3: Continuous State

- Use regression trees to model continuous state
- Each tree has a linear regression model at its leaves
- Discretize state space for value updates from UCT, but still plan over continuously valued states

Challenge 4: Actuator Delays

- Delays make domain non-Markov, but k-Markov
- Provide model with previous k actions (Similar to U-Tree [McCallum 1996])
- Trees can learn which delayed actions are relevant
- UCT can plan over augmented state-action histories easily
- Would not be as easy with tabular models or dynamic programming

Using ROS

- TEXPLORE sends action messages and receives statereward messages
- Interface node translates actions to actuator commands and translates sensor information into state-reward
- No need to touch the TEXPLORE code, simply subscribe to and publish the correct messages

Learning on the Autonomous Vehicle

• Learns the task within 2 minutes of driving time

Conclusion

- TEXPLORE can:
 - 1. Learn in few samples
 - 2. Act continually in **real-time**
 - 3. Learn in **continuous** domains
 - 4. Handle actuator delays
- TEXPLORE code has been released as a ROS package: www.ros.org/wiki/rl-texplore-ros-pkg

Challenge 2: Real-Time Action

- Model learning and planning on parallel threads
- Use sample-based planning (anytime)
- Mutex locks on shared data