
The Open-Source TEXPLORE Code Release for Reinforcement Learning on Robots

TODD HESTER AND PETER STONE

The University of Texas at Austin
Austin, TX 78712 USA

{todd,pstone}@cs.utexas.edu

ABSTRACT

• Applying RL to robots could enable them to learn many
useful tasks

• Learning on robots presents four specific challenges for
RL

• The TEXPLORE algorithm addresses all four challenges

• TEXPLORE is released as an open-source ROS repository

• It is easy to integrate TEXPLORE with robots already run-
ning ROS

Motivation

• Robots have the potential to solve many problems

• We need methods for them to learn and adapt to new
situations

Reinforcement Learning

• Value function RL has string of positive theoretical re-
sults [Watkins 1989, Brafman and Tennenholtz 2001]

• Could be used for learning and adaptation on robots

• Model-free Methods:

– Learn a value function directly from interaction
with environment

– Can run in real-time, but not very sample efficient

• Model-based Methods:

– Learn model of transition and reward dynamics

– Update value function using model (planning)

– Can update action-values without taking real ac-
tions in the world

Velocity Control of an Autonomous Vehicle

• Upgraded to run autonomously by adding shift-by-wire,
steering, and braking actuators.

• 10 second episodes (at 20 Hz: 200 samples / episode)

• State:

– Current Velocity

– Desired Velocity

– Accelerator Pedal Position

– Brake Pedal Position

• Actions: Do nothing, Increase/decrease brake position
by 0.1, Increase/decrease accelerator position by 0.1

• Reward: -10.0 * velocity error (m/s)

Robot Learning Challenges

1. Learning algorithm must learn in very few actions (be
sample efficient)

2. Learning algorithmmust take actions continually in real-
time (while learning)

3. Learning algorithm must handle continuous state

4. Learning algorithm must handle delayed actions

The TEXPLORE Algorithm

1. Limits exploration to be sample efficient

2. Selects actions continually in real-time

3. Handles continuous state

4. Handles actuator delays

Available publicly as a ROS package:
www.ros.org/wiki/rl-texplore-ros-pkg

Challenge 1: Sample Efficiency

• Treat model learning as a supervised learning problem

– Input: State and Action

– Output: Distribution over next states and reward

• Factored model: Learn a separate model to predict each
next state feature and reward

• Decision Trees: Split space into regions with similar dy-
namics

• Random Forest: Average predictions ofm trees

• Acting greedily w.r.t. the average model balances predic-
tions of optimistic and pessimistic models

• Limits the agent’s exploration to state-actions that ap-
pear promising, while avoiding those which may have
negative outcomes

Challenge 2: Real-Time Action

• Model learning and planning on parallel threads

• Use sample-based planning (anytime)

• Mutex locks on shared data

Challenge 3: Continuous State

• Use regression trees to model continuous state

• Each tree has a linear regression model at its leaves

• Discretize state space for value updates from UCT, but
still plan over continuously valued states

Challenge 4: Actuator Delays

• Delays make domain non-Markov, but k-Markov

• Provide model with previous k actions (Similar to U-Tree
[McCallum 1996])

• Trees can learn which delayed actions are relevant

• UCT can plan over augmented state-action histories eas-
ily

• Would not be as easy with tabular models or dynamic
programming

Using ROS

• TEXPLORE sends action messages and receives state-

rewardmessages

• Interface node translates actions to actuator commands
and translates sensor information into state-reward

• No need to touch the TEXPLORE code, simply subscribe
to and publish the correct messages

Learning on the Autonomous Vehicle

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0 5 10 15 20

A
v
e
ra

g
e
 R

e
w

a
rd

Episode Number

Physical Vehicle Velocity Control from 2 to 5 m/s

• Learns the task within 2 minutes of driving time

Conclusion

• TEXPLORE can:

1. Learn in few samples

2. Act continually in real-time

3. Learn in continuous domains

4. Handle actuator delays

• TEXPLORE code has been released as a ROS package:
www.ros.org/wiki/rl-texplore-ros-pkg

