
NSF Secure and Trustworthy Cyberspace Inaugural Principal Investigator Meeting
Nov. 27 -29th 2012

National Harbor, MD

Interested in meeting the PIs? Attach post-it note below!

Retrofitting Software for Defense-in-Depth

Goal: Retrofit legacy software with a combination of
security mechanisms optimally via automated methods

PIs: Trent Jaeger (PSU), Vinod Ganapathy (Rutgers), Chritian Skalka (UVM), Gang Tan (PSU)

https://www.cse.psu.edu/~trj1/retrofit4security.html

Retrofitting for privilege separation should
enable balance of security and performance

Retrofitting for authorization should apply
hooks to enforce expected policies

Retrofitting for auditing should enable logging
to answer expected retrospective queries

Approach
•  Find security-sensitive operations: Each

security control aims to mediate access
to security-sensitive operations.

•  Aid programmers in defining retrofitting
policies: Security goals must be related
to security-sensitive operations.

•  Place controls for security goals: Given a
retrofitting policy, transform the program to
satisfy that policy while minimizing cost.

•  Verify correct transformations: Leverage
formal methods to assure correct transforms
from our retrofitting framework.

Programmers manually retrofit their
programs to add security controls for:

 Privilege Separation
 Authorization
 Auditing

Can we automate retrofitting across all
these security controls optimally?

Graphic related to project

Privilege Separation
Problem: Many modern frameworks offer support
for least-privilege execution, but transforming
legacy software to conform to these frameworks is
tedious and error prone.
Approach: Developing an automated toolchain to
refactor software for least-privilege frameworks.
Implemented for the Mozilla JetPack framework.

Auditing
Problem: A lack of formal foundations supporting
correctness conditions for specifying and
retrofitting to enforce in-depth auditing policies.
Approach: Developing new formal semantics for
auditing to support logical specifications of in-
depth policies and soundness/completeness
properties for retrofitting auditing instrumentation.

Authorization
Problem: Programmers have manually modified
several programs to add authorization, but this task
is time-consuming and error prone.
Approach: Use “choices” programs make using
input to identify operations and leverage constraints
on access policies to generate minimal placements.

Validation
Problem: Retrofitting transformations often
implemented as compiler passes. Guarantees offered
by inserted instrumentation may be undone by
compiler optimizations.
Approach: Harnessing SMT solvers to prove
equivalence of transformations across optimizations.

STRATA Framework

Task 1:
Generate Retrofitting

Policy for Authorization

Task 4:
Unified Retrofitting for

Defense-in-Depth
Authorization

Retrofitting Policy

Task 2:
Generate Retrofitting

Policy for Containment

Task 3:
Generate Retrofitting

Policy for Auditing

Program Code

Programmer
Input

Containment
Retrofitting Policy

Auditing
Retrofitting Policy

Programs Retrofitted
for Defense-in-Depth

From Task 1:
Transformation and

Verification for Authorization

From Task 2:
Transformation and

Verification for Containment

From Task 3:
Transformation and

Verification for Auditing

Feedback

STEP ONE STEP TWO

Figure 1: STRATA framework related to project tasks

Thus, our proposed retrofitting method would extract security-sensitive operations from
request loop and relate those operations to security goals, with detailed, manual code inspection
or annotation by programmers. Using the security-sensitive operations and security goals, our proposed
retrofitting method should produce a retrofitted program that consume minimal functional cost and
verifiably satisfies those security goals for the security-sensitive operations.

3 Research Plan
This project aims to produce techniques and theories to retrofit a program to add a series of defensive se-
curity controls to protect program data from unauthorized access, specifically containment, authorization,
and auditing. While there are many differences among these security controls, we find that retrofitting
these security controls into programs requires solving four common problems:
• Finding security-sensitive operations. Each security control aims to mediate access to security-sensitive

operations for different purposes (e.g., defining protection boundaries or logging such operations). While
security-sensitive operations may differ for individual controls, we find that such operations share the
ability to direct execution among unsafe choices. We propose a method based on finding the program
statements where control and data “choices” are made using input from untrusted sources [?].
• Relating security-sensitive operations to security goals using retrofitting policy. We have found that simply

mediating every security-sensitive operation creates unnecessary overhead for performance and policy
management. Instead, programmers need a way to relate security goals to security-sensitive operations
that does not require detailed, manual analysis of program code. We propose a method that program-
mers use interactively to find relationships between security-sensitive operations based on their impact
on satisfying security goals [?], which we call a retrofitting policy.
• Place controls for security goals. Given a retrofitting policy, the goal is to transform the program to sat-

isfy that policy while minimizing cost. While different transformations are applied for different types of
security controls, choosing where to place security controls requires complete mediation of relevant pro-
gram flows in all cases. We propose to explore use of program dependence graphs [?] (PDGs) for reasoning
about control and data flows uniformly for all security controls.
• Verifying correct transformations. Despite the use of different methods for placing transformation and

distinct transformation primitives, each method transforms code to mediate security-sensitive operations
for a security goal. We explore how to leverage formal methods, so that high assurance is obtained from
our retrofitting framework. We plan to verify the correctness of the transformation methods proposed
by building proofs of correctness inside Coq [?].
Figure ?? presents an overview of our proposed STRATA framework, which uses the methods described

above. The STRATA framework enables programmers to retrofit their programs with containment, autho-
rization, and auditing security controls in two steps. In the first step, programmers interactively develop
retrofitting policies for each of these security controls. In the second step, automated methods transform
programs with security controls to satisfy a composition of those retrofitting policies while minimizing cost,

The STRATA Framework aims to aid
programmers in designing retrofitting
policies that can then be applied in an
unified manner to produce optimized
and validated security code.

