
Sixth	Annual	Cyber-Physical	Systems	Principal	Inves9gators’	Mee9ng	
Arlington,	VA	–	November	16-17,	2015	

The	STRATA	Framework	aims	to	
aid	programmers	in	designing	
retrofi&ng	policies	that	can	then	
be	applied	in	an	unified	manner	
to	produce	op3mized	and						
						validated	security	code.		

Solu9on:		
•  Use	declara5ve	retrofi&ng	

policies	to	generate	code	for	
privilege	separa5on,	
authoriza5on,	and	audi5ng.	

•  Generate	minimal	and	
validated	security	code	to	
enforce	expected	policies.	

Challenges:		
•  Retrofit	legacy	so?ware	

with	a	combina5on	of	
security	mechanisms	
op5mally	via	
automated	methods.	

•  Validate	and	verify	the	
retrofiBng	
transforma5ons	for	
security.	

	

Trent	Jaeger,	Penn	State,	CNS-1408880	
Vinod	Ganapathy,	Rutgers,	CNS-1408803	
Chris5an	Skalka,	Vermont,	CNS-1408801	
Gang	Tan,	Penn	State,	CNS-1624126	

RetrofiRng	SoSware	for	Defense-in-Depth		

STRATA Framework

Task 1:
Generate Retrofitting 

Policy for Authorization

Task 4:
Unified Retrofitting for 

Defense-in-Depth
Authorization 

Retrofitting Policy

Task 2:
Generate Retrofitting 

Policy for Containment

Task 3:
Generate Retrofitting 

Policy for Auditing

Program Code

Programmer
Input

Containment 
Retrofitting Policy

Auditing 
Retrofitting Policy

Programs Retrofitted 
for Defense-in-Depth

From Task 1:
Transformation and 

Verification for Authorization

From Task 2:
Transformation and 

Verification for Containment

From Task 3:
Transformation and 

Verification for Auditing

Feedback

STEP ONE STEP TWO

Figure 1: STRATA framework related to project tasks

Thus, our proposed retrofitting method would extract security-sensitive operations from
request loop and relate those operations to security goals, with detailed, manual code inspection
or annotation by programmers. Using the security-sensitive operations and security goals, our proposed
retrofitting method should produce a retrofitted program that consume minimal functional cost and
verifiably satisfies those security goals for the security-sensitive operations.

3 Research Plan
This project aims to produce techniques and theories to retrofit a program to add a series of defensive se-
curity controls to protect program data from unauthorized access, specifically containment, authorization,
and auditing. While there are many differences among these security controls, we find that retrofitting
these security controls into programs requires solving four common problems:
• Finding security-sensitive operations. Each security control aims to mediate access to security-sensitive

operations for different purposes (e.g., defining protection boundaries or logging such operations). While
security-sensitive operations may differ for individual controls, we find that such operations share the
ability to direct execution among unsafe choices. We propose a method based on finding the program
statements where control and data “choices” are made using input from untrusted sources [?].
• Relating security-sensitive operations to security goals using retrofitting policy. We have found that simply

mediating every security-sensitive operation creates unnecessary overhead for performance and policy
management. Instead, programmers need a way to relate security goals to security-sensitive operations
that does not require detailed, manual analysis of program code. We propose a method that program-
mers use interactively to find relationships between security-sensitive operations based on their impact
on satisfying security goals [?], which we call a retrofitting policy.
• Place controls for security goals. Given a retrofitting policy, the goal is to transform the program to sat-

isfy that policy while minimizing cost. While different transformations are applied for different types of
security controls, choosing where to place security controls requires complete mediation of relevant pro-
gram flows in all cases. We propose to explore use of program dependence graphs [?] (PDGs) for reasoning
about control and data flows uniformly for all security controls.
• Verifying correct transformations. Despite the use of different methods for placing transformation and

distinct transformation primitives, each method transforms code to mediate security-sensitive operations
for a security goal. We explore how to leverage formal methods, so that high assurance is obtained from
our retrofitting framework. We plan to verify the correctness of the transformation methods proposed
by building proofs of correctness inside Coq [?].
Figure ?? presents an overview of our proposed STRATA framework, which uses the methods described

above. The STRATA framework enables programmers to retrofit their programs with containment, autho-
rization, and auditing security controls in two steps. In the first step, programmers interactively develop
retrofitting policies for each of these security controls. In the second step, automated methods transform
programs with security controls to satisfy a composition of those retrofitting policies while minimizing cost,

Broader	Impact:		
•  Exploring	how	

programmers	retrofit	
security	into	their	
programs.	

•  Goal	is	an	open-source	
tool-chain	to	retrofit	
programs	to	enforce	
expected	policies.	

•  Integra5ng	tool	use	into	
coursework	and	plan	for	
summer	school	on	
retrofiBng	so?ware.	

Scien9fic	Impact:		
•  Improve	algorithms	for	

automated	privilege	
separa5on,	authoriza5on,	
and	audi5ng,	including	
integra5on	and	valida5on.		

	

•  Learn	how	to	balance	
security	and	performance	
across	defenses	
systema5cally.	


