. e o ° - & UNIVERSITY OF
Robots with Vision that Find Objects Y MARYT AND

Yiannis Aloimonos and Cornelia Fermuller )

Institute for Advanced Computer Studies, University of Maryland, College Park, MD Cognitive Robotics Group
Project: CPS (CNS 1035542)

Abstract Application in Bottom-up Processing

Introducing Higher Level Knowledge

Visual processing using the image torque operator
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A robot is instructed in language to find an object (from a generic class) in a -
cluttered room. For example, the robot may be asked to find an “apple” or \
a “cup”. We take a bio-inspired, active approach to this problem that H @___‘
combines vision, action, and higher-level cognition. It consists of three —— —
modules: an attention mechanism that finds interesting parts of the scene, @

a segmentation mechanls.rr) that se.parates foreground reglo.ns from T — Vicual Attention Boundary ———
background, and a recognition mechanism based on shape descriptors of N Detection /
contours and surfaces and the relationship object affordances and their .

chane S Attention

Since it is not feasible for the robot to search everywhere, we need to reduce the
search space by utilizing knowledge from language:

This year we developed a new mid-level vision mechanism, called the ~ = Contextual - e.g. shoes are on floor, keys are on table
1 : = Properties (attributes) — size, shape, appearance are known

Torque Operator [, which captures the concept of closed contours. It takes Saliency map W | GBVS | Torque |GBVS+Torque| Ground truth
as input edges and computes over regions of different size a measure of - B B B B B
how well the edges are aligned to form a closed, convex contour. First, the SN T L S
torque was implemented and tested as a generic mechanism for visual Gaussian distributions | T - -~ |

. . . . centered at torque extrema
attention and segmentation. Second, high level knowledge about object

. . . e, . Method F-measure

properties was incorporated into the torque: Specifically, size and global
shape, acquired through learning, were utilized in the attention process, It 0-53 v
and features of object contour were used to modify the torque mechanism GBVSH 059 — - —— ——

. _ _ - _ Improved by Examplgs of visual attention for two test images
to bias attention and segmentation for specific object classes. Torque 0.54 Toroue Evaluation on dataset by (Judd et al., 2009 ) ¥

GBVS+Torque 0.60
. o GBVS+Torque is with weights 0.7 and 0.3.
Definition of Torque N ) ) Y

Input Image with known object size Estimated Patch Sizes

Knowing which edges belongs to an object, we weigh
edges differently in the torque measure:
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Using the torque Segmentation Introducing Knowledge about the Contour Shape
orque is computed at every pixel and for multiple patch sizes. " Fixation based segmentation A Input Image World Knowledge Fixed Segmentation
Torque Volume: set of all image torque values Graph-cut segmentation method defined S Toraus (Canny) | Chan-v FE—— Ax.round(x) » Iboxy(x)
_ : : on edges in polar coordinate system anny orque (Canny an-Vese round tru x.round(x) * Iboxy(x
Scale map: map of scales with max. torque over patch sizes with the origin at the fixation point I
Value map: map of max. torque values over patch sizes Experiment
Comparison of fixation based
segmentation using different ways of U e
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Properties of the torque: GBS —
Torque is large where edges surround the center of the patch Evaluation on dataset by (Stein et al., 2008)"!
and scale matches the size of patch. - Y,
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