
RockSalt:
A Formally Verified Machine Code Security Checker

PIs: Gang Tan (Lehigh University), Greg Morrisett (Harvard University)
Participants: Joseph Tassarotti, Jean-Baptiste Tristan, Edward Gan

Introduction and Overview

SFI Policy

Results and Conclusions

Modular DSLs for Specification of x86

Model Architecture

Model Validation

The Verified Checker

Proof of Correctness

Motivation

•Google's Native Client (NaCl) uses software-
based fault isolation (SFI) to safely run
untrusted binaries.

•Policy conceptually simple, but easy to get the
details wrong.

Goal

•Build checker with smaller trusted computing
base.

Methodology

•Develop formal model of x86 in Coq using
declarative DSLs. Two components: Syntax
(instruction decoding) and Semantics.

•Automatically generate from x86
specifications a DFA to conduct SFI verification

•Prove DFA generator respects safety policy

Deliverables:
•Extensible and Declarative DSL for specifying parsers and interpreters
•Parser for 130 instructions, semantic specifications for 70
•Fast, small, DFA tables proven correct

Future Work:
•More instructions:
•More sophisticated runtime model
•Verified C code
•Richer policies: XFI

Lessons Learned:

•Compiling from DSLs to a core language simplifies reasoning and allows code reuse
•Use of derivatives with parser combinators allows for natural syntactic reasoning

Design of Checker:

Main routine of our NaCl Checker:

DFA match routine:

•Above C checker was written based on a Coq
version

•We show that if the checker written in Coq
returns true when run on a program, then
that program adheres to the desired security
policy

•If a particular DFA returns true, then
the corresponding instruction is in the

appropriate class

•We say that a machine state is appropriate
when:

(1) the data and code segments are disjoint
(2) the DS, SS, and GS segment registers

point to the segments they initially did
(3) CS segment register points to initial

code
segment

(4) the program counter points within the
code segment

(5) the original bytes of the program are
stored in the code segment

•A state is locally-safe when it is appropriate
and the program counter holds an address
corresponding to the start of an instruction
matched by one of the 3 DFAs

•An appropriate state is k-safe when k>0,
and for any s' such that s s', either s' is
locally-safe or s' is (k-1)-safe

•We show that if the checker returns true,
and a machine is in a locally-safe state, then
it is k-safe for some k

Compilation, Verification, Execution

•Problem: How to ensure correct instruction
parsing for different parse offsets?

Restricting Parse Offsets

Sandbox Constraints

Valid Code Example

Semantic Pathway

Verified Checker

Syntax: Parser Combinators with Derivatives Semantics: Monadic Compilation to Low Level
Register Transfer Language (RTL)

Two Tracks: Simulation and Execution

Datatype for grammars:

Sample Specification:

Sample Specification:

Map: Parse Action

Concatenation User Defined Nonterminal

AST Constructor

Fresh Var Binding

Specialize Memory

ops for current

•Transition table for DFAs generated
automatically from Coq x86
specifications. C program mechanically
follows tables.

