SONYC: Monitoring, Analysis and Mitigation of
Urban Noise Pollution

Juan Pablo Bello, Claudio Silva, Oded Nov, Luke DuBois (New York University)
and Anish Arora (Ohio State University), w/ Charlie Mydlarz

CPS PI Meeting
Alexandria, November 15-16, 2018

¢
|
THE OHIO STATE Environmental

NYU UNIVERSITY X Protection

m




Ehe New Pork @imes  https://nyti.ms/2vBlsjh

N.Y. | REGION

New York Becomes the City
That Never Shuts Up

B}' WINNIE HU Juwy 19, 2017
Richard T. McIntosh has never heard such a racket outside his window.

Traffic roars through his neighborhood on the Upper East Side of Manhattan at

all hours. The whine of refrigerated grocery trucks by the curb makes things worse.
And construction of a new apartment tower across the street forces him to flee his

own home. There is the deafening rat-a-tat of jack hammers and the incessant
banging and high-pitched wail of construction equipment that echoes in his head.

“I've had two years of absolute violation of my right to peace and quiet,” said
Mr. MclIntosh, a television producer who has lived on the Upper East Side for more

than five decades. “I think it’s against the Geneva Conventions to have this much

noise.”

New York City has never been kind to human ears, from its screeching subways
and honking taxis to wailing police sirens. But even at its loudest, there were always
relatively tranquil pockets like the Upper East Side that offered some relief from the
day-to-day cacophony of the big city. Those pockets are vanishing. As the city grows
more crowded, with a record 8.5 million residents and a forest of new buildings,
finding respite from loud cellphone chatter, rooftop parties, backhoes digging

foundations, or any other aural assault has become harder and harder.

In other words, New York is really living up to its reputation as the city that
never sleeps.



Noise impact

Estimated 9 of 10 adults in NYC exposed to harmful
levels of noise
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Noise pollution can result in:
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SONYC

CPS solution aimed at reducing

urban noise pollution




SONYC
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54 sensors, 3 NYC boroughs: 60 years of noise data
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Signal at hour resolution
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Large-scale noise analysis and visualization



Demo



| ots of sensor network data: so what?

 Crowd-sourced annotations

soﬁyc Sounds of New York City (SONYC) © CLASSIFY TALK COLLECT

Great work! Looks like this project is out of data at the moment!
See the results or dismiss this message
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| ots of sensor network data: so what?

* Multiple-instance learning using auto-pooling
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| ots of sensor network data: so what?

 Self-supervised embedding learning

Step 1: train embedding model on surrogate task

Update Parameters

Fusmn Corresponds?
Layers (Yes/No)

| olLabel

Step 2: use embedding to train “downstream” model on target task

Small dataset of Prediction
labeled audio Deep embedding model Audio embedding Small model on target task
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| ots of sensor network data: so what?

- Context-adaptive neural networks

100 5

50 4

Precision (%)

2:‘ -
71 -8~ CNN baseline: 56.06%

—&- + PCEN: 65.95%

-8 + augmentation: 66.31%
-8~ + adaptive threshold: 71,97%
-8 ICASSP 2018: 61.64%

0 25 50 75 100
Recall (%)



| ots of sensor network data: so what?

The reality of running a sensor network
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| ots of sensor network data: so what?

- Status data: normal vs pre-failure
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DEP partnership: building deployments, mobile sensor, focused studies
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sofivo )

https://wp.nyu.edu/sonyc/
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