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Noise impact

STRESS

Estimated 9 of 10 adults in NYC exposed to harmful
levels of noise
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CPS solution aimed at reducing
urban noise pollution
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54 sensors, 3 NYC boroughs: 60 years of noise data



Deep Machine Listening Automatic noise source ID



Large-scale noise analysis and visualization



Demo



Lots of sensor network data: so what?

• Crowd-sourced annotations



Lots of sensor network data: so what?

• Multiple-instance learning using auto-pooling



• Self-supervised embedding learning

Lots of sensor network data: so what? 2

in time. The L3 architecture as shown in Figure 1 has three
distinct parts: the vision and the audio subnetworks which
extract visual and audio features respectively, and the fusion
layers which use both modalities to predict correspondence.

Fig. 1. High-level architecture of L3

The audio and vision subnetworks use four blocks of
convolutional and max-pooling layers, the outputs of which
are flattened, concatenated, and given to the fully-connected
fusion layers to produce the correspondence probability. The
audio embedding is obtained from the final output layer of the
audio subnetwork before the non-linearity and adding a max-
pooling layer, the output of which is flattened. The authors [7]
use a pool-size leading to an embedding of size 6144.

While the embedding holds a lot of promise for downstream
tasks, there are design choices unexplained by the authors that
may impact the efficacy and computational cost of the embed-
ding. To better understand the behavior of the embedding, we
explore four design choices that we believe to be impactful:

A. Input representation

The authors use a linear-frequency magnitiude (dB) spec-
trogram as the input to the audio subnetwork. However, it is
common to use Mel-frequency magnitude (dB) spectrograms
instead, which are believed to more efficiently capture rele-
vant perceptual information with less frequency bands [31].
Additionally, because the partials in harmonic content are
logarithmically spaced, convolutional filters should be able to
generalize better in the Mel-frequency space.

B. Training data domain and match to downstream tasks

The authors of L3 [7] use content which they expect to have
high degree of AVC. Originally they used the Flickr dataset
[6], and subsequently a subset of the AudioSet dataset [8].
The labels provided by AudioSet help to understand the types
of content in the videos and how they affect the behavior of
the embedding models. The authors use a subset of videos
with mostly musical instruments while the downstream tasks
contain mainly environmental sound. We examine whether
matching the audio domain used to train the embedding with
the domain of the downstream task improves performance. We
expect that matching the domains will have a positive effect.

C. Amount of training data

The authors train their models with 60M samples, but do
not discuss how the amount of training data used affects
the efficacy of the embeddings. Since training these models

can take significant time and computational resources, it is
beneficial to quantify the trade-off between the amount of
data used to train the embedding and its performance on the
downstream classification tasks.

D. Effect of data augmentation on embedding space

Data augmentation is a common technique for improv-
ing generalization of models, shown to be helpful in audio
classification [4]. However, the authors do not use it when
training their downstream audio classifiers. Since the embed-
ding is trained using a significant amount of audio data, we
are interested to know if the variability introduced by data
augmentation has already been captured by the embedding,
expecting that data augmentation will have a small effect on
downstream classification when using these embeddings.

III. EXPERIMENTAL DESIGN

We employ a 2-stage experimental design, first training a
deep audio embedding, and then evaluating the audio embed-
ding as a feature extractor in a downstream classification task.

A. Deep audio embedding model

We use AudioSet to train the L3 audio embedding models.
For each 10 s video in AudioSet, we download 30-fps h.264-
encoded videos and 48 kHz FLAC audio files. We were able
to acquire about 2M videos AudioSet. We release the code we
developed to download the videos online1.

We train the models using two subsets of AudioSet [10],
music and environmental. The music subset replicates that
used in [8] which includes musical instruments and tools, cho-
sen for its expected high AVC. The environmental subset in-
cludes categories such as human sounds, some animal sounds,
and other sounds found in natural acoustic environments.
We filter the videos using AudioSet labels, obtaining 296K
and 195K videos for the music and environmental subsets
respectively, using 80% for training, 10% for validation, and
10% for testing. We sample videos using the pescador
[32] framework. For each video, we follow the sampling and
augmentation scheme in [7], sampling 224x224 image patches
and 1 s audio clips. We generate 60M training examples, 10M
validation examples, and 10M testing examples.

We train the models for 300 epochs, with 4,096 batches of
size 64 per epoch, corresponding to the model seeing 78.6M
training examples. The Adam optimizer is used to minimize
binary cross-entropy loss with L2 regularization, with an initial
learning rate 10�5, �1 = 0.9, and �2 = 0.999. To compute
the Mel-spectrograms, we use kapre [33], which implements
the operation as a TensorFlow [34] layer, taking advantage of
GPU. We use HTK Mel-spectrograms [35], with 128 or 256
Mel bands. We choose the model parameters from the epoch
with the highest validation accuracy. Each model took about
10 days to train using four GPUs.

To evaluate whether the model has been sufficiently trained,
we look at the binary classification accuracy on the AVC task.

1https://github.com/marl/audiosetdl



• Context-adaptive neural networks

Lots of sensor network data: so what?



Lots of sensor network data: so what?

• The reality of running a sensor network



• Status data: normal vs pre-failure

• Classifier trained on 18 mo. of network data

Lots of sensor network data: so what?



DEP partnership: building deployments, mobile sensor, focused studies



on building mobile unit inspector



https://wp.nyu.edu/sonyc/
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