
Safe	Collaborative	Driving	Systems	
N.	F.	Maxemchuk,	Shou-pon Lin, Yitian	GuProject	Number	1329593

Objective
To	apply	the	testing	and	design	techniques	developed	for	communication	networks	to	intelligent	vehicles.

A	collaborative	lane	merge	protocol	is	used	to	test	the	techniques	.

Previous	Accomplishments

1. Multiple Stack Layered Architecture

• One stack for each interaction with the physical world.
• Well defined Interfaces
• Change and test one layer without affecting others

2. Synchronized Clocks

• Reduce number of sequences of events by having events occur
simultaneously, rather than in different orders – Simplifies verification

• New Protocols
1) A	Broadcast	protocol	with	a	unique	message	that cannot	be	lost

- Each	vehicle	communicates	at	scheduled	times.
- The	message	that	is	not	sent	at	the	scheduled	time	cannot	be	lost	(It	
will	not	be	received	when	it	is	not	transmitted).
- This	message	is	used	to	guarantee	that	an	emergency	operation,	such	
as	aborting	a	lane	merge,	will	take	place	at	all	vehicles.

2) A Lock protocol in which all vehicles simultaneously release the lock,
even when communications is lost.
- Used to guarantee that each vehicle participates in only one
collaboration at a time.

- This reduces the difficulty to verify that there are no dangerous
interactions between vehicles. We must only prove that a single
protocol is safe, rather than proving that all combinations of protocols
are safe.

3. Probabilistic Verification

• Objective: Bound the probability that unexamined interactions between
vehicles may cause an accident, to a level that is required in automotive
applications.

• Vehicle safety requirements are extremely demanding – We have verified
that the merge protocol only enters an unexplored state, and may fail,
less than once every 5*1013 protocol invocations.

• Each component of the architecture may fail, and this failure affects the
failure rate of the other components that are dependent upon it.

• By designing the interconnections between protocol components, in the
architecture, to eliminate feedback loops, we can bound the individual
protocols separately, and obtain a safety bound for the entire vehicle.

Current	Work
1. Conformance Testing

Definitions:
1. Conformance testing guarantees that protocols implemented by

different vendors will interoperate.
- We assume that the protocols have been verified and that the vendors will
interoperate if the protocols are implemented correctly.

2. The Rural Postman package, developed by Bell Labs for telephone
systems, tests each implementation against a finite state machine
(FSM) model of a protocol, instead of testing implementations
against one another.
- If there are “N” implementations of a 2-party protocol there are N, rather than N2 tests.
- The Postman package finds a tour with a relatively small number of tests

Problem:
• Collaborative driving systems have time critical operations.
• The FSM model in the postman package cannot accommodate

timers.
Solution:
By	design,	the	protocols	in	our	architecture	do	not	have	timers,	or	tests	
based	on	time.
• Instead, all time related events are handled in the timing stack.
• A protocol sends a message to the timing stack to request an

interrupt, and receives a message at the appropriate time.
• Messages are consistent with the FSM model in the Postman

package, and all of the protocol implementations, excluding the
timing stack and physical interfaces, are tested with Postman
sequences.

2. Protection Against Malicious Users

Implementation:
The intelligent interactions between vehicles are defined as finite state
machines. There is a small allowable message set for each machine, and
external hackers have limited access to the software.

Punishment:
Messages in collaborative operations are signed. We assume that
intentionally causing accidents is illegal, and that identifying malicious users
will act as a deterrent.

Prevention and Detection:
Two types of messages:
1) Data	messages:	e.x.	sensor	reading	for	distances	between	vehicles

We require measurements from multiple vehicles to agree before
participating in a collaborative operation. This prevents a single vehicle
from affecting the collaboration.

2) Control	messages:	Messages that	cause	the	transitions in	the	FSM’s.
• We have defined a set of potentially dangerous situations, such as two

vehicles moving into the same space.
• We assume that a malicious user can send any combination of the

messages allowed by the FSM’s. We use a depth first search to determine
if there is any message combination that will result in a dangerous
situation.

• This analysis has resulted in a change in the lock protocol, to prevent a
malicious user from claiming that he has not granted a lock when he has.

• We are automating this testing procedure.


