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* Problem: safety-critical CPS is turning into complex

networked systems vulnerable to remote attacks

— Internet connectivity + vulnerabilities in complex HW & SW
— Implementation attacks: exploit bugs in HW or SW
— Algorithmic attacks: tamper with inputs to control algorithms

* ODbjective: provable security assurance for safety-

critical operations of autonomous driving systems

— Focus on collision avoidance in self-driving cars
— Formal assurance for security guarantees

Verifiably Secure Hardware

* TJoday's hardware is insufficient to protect safety-critical

CPS platforms

— No capabillity for fine-grained IFC across heterogeneous modules
— No protection against timing interference

— No formal security guarantee

* Redesign architecture for comprehensive and verifiable

“Integrity” protection assurance

 Formal assurance: security type system for Verilog

— Associate security labels with hardware signals
— Statically check hardware-level information flows

Technical Approach

* Co-design hardware, software, and control algorithms

* Language-based Information Flow Control (IFC) for

formal security assurance
— Partition autonomous driving systems into multiple security levels

— Build hardware and software with provable full-system
iInformation flow control (IFC) to ensure safety-critical operations
can only be affected by untrusted inputs after an explicit
endorsement

» Control algorithms to deal with untrusted information
and provide guantitative safety assurance

reg [18:0] {L} tagO[256]; always (@ (posedge clock) begin

reg [18:0] {H} tagl[256]; if (write enable) begin
wire [7:0] {L} index; case (way)

0:| tag0[index] = tag 1in;
// Par(0) =1L Par(l) = H 1:| tagl[index] = tag in;
wire {Par (way) } way; endcase
w%re [18:0] {Par (way)} tag_in; end Security check
wire {Par (way) } write enable; end

Security check in the type system guarantees:

- No explicit information flow from H to L

- No unintended timing channels: when the label of an instruction is L, its execution time should
only be affected by L hardware state

Control Algorithms and Safety Analysis

* Develop collision avoidance algorithms to handle

untrusted Inputs such as detailed maps, traffic info, etc.

— Strategy (1): sensor verification of map; preload key known
landmarks; verify landmarks while driving

— Strategy (2): verification of plan via sensors; develop plan with
untrusted map; build occupancy map via sensor data only in front
of car; verify plan will not cause collision

— Strategy (3): contingency planning; develop nominal plan with
untrusted map; develop a family of plans based on the potential of
untrusted data; optimize plan switching logic to provide collision
guarantees; utilize multiple sensors

* Probabillistic collision analysis of the integrated system

— Quantitative analysis of the safety—collision probabillity

— Investigate the tradeoff between collision probability and security
protection levels (timing guarantees, amount of information, size of
TCB, etc.)
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* Real-world attack example on Jeep [wmiller & Valasek 2015]

— Head unit runs mainly on OMAP chip
— OMAP communicates w/ v850 chip for remote door unlock, etc.

* Vulnerability: software updates including v850
software are unsigned & performed via head unit

* |FC solution: ensures integrity of software updates
(e.g., explicit endorsement after verifying signatures)

SW-Level Information Flow Control

* Information-flow type systems enforce strong security

properties assuming trustworthy hardware
— Noninterference: No information flow from untrusted source to
trusted sinks

— Robust endorsement: trusted data influenced by untrusted data In
circumscribed ways

MapData{U} map;
Location{T} destination;
Route{U} naviplan;
Path{T} pathplan;

High Integrity

Path planner with
collision avoidance

// compute the navigation route using map
naviplan.genRoute(map, destination);

Other autonomous
driving functions

Waypoint{U} w = naviplan.nextWaypoint();

// check and endorse next step to high
// integrity if it checks out vs. sensor data
endorse(w, L to H) if (verifiedStep(w)) {
// generate a trusted vehicle path ‘
pathplan.genPath(w, ...); Low Integrity

Untrusted network

}

* Extend language-based information flow control to

handle integrity and availability on modern SoCs

— Prove the use of correct information flows
— Handle information flows through heterogeneous element

= Full stack of hardware + software satisfies strong
iInformation flow security properties

Segway Autonomous Driving Testbed

* Integrates all three components: HW, SW, control
— Segway robot with cameras, lidar, and IMU/GPS. Use for year-
round testing in controlled environments.
— FPGA-based hardware platform: ARM + custom RISC-V processor
— Software In Jif programming language
— Migrate to the Skynet autonomous driving vehicle in the future
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