
Secure Network Provenance

*University of Pennsylvania #Georgetown University

Andreas Haeberlen* Boon Thau Loo* Micah Sherr # Zachary G. Ives*
Wenchao Zhou# Mingchen Zhao* Arjun Narayan* Alexander Gurney* W. Brad Moore# Qiong Fei*

1 Problem: Secure forensics 2 Approach: Data provenance 3 Key ideas
Attacker has changed the
router's policy to redirect
traffic, so he can intercept it

Modified route - route(Alice, r1)
+ route(Alice, r2)

available
(Ali)

routingPolicy
(Ali)

+ available
(Ali) h

h17

c17

� Each node maintains a tamper-evident
log of all the messages it has sent
and received.

Scenario: Attacker has secretly compromised Idea: System should be able to "explain" its

Alice
important.com

A

C
B

Old route

(Alice, r1) (Alice, r2>r1) (Alice, r2)

export
(B, Alice, r1)

route
(B, r1)

+ export
(A, Alice, r2)

exportOK
(B, r1)

route
(A, r2)

+ exportOK
(A, r2) h14

h15

h16

c16
s16
t16

c17
s17
t17

c15
s15
t15

� If a compromised node modifies,
forges, omits, or reorders messages,
this can be detected
� Forensic investigator can audit

a node's log and replay it to
reconstruct its execution
T t t th t b i t

y p
some unknown part of a distributed system

Goal: Enable the administrators to detect and

� Affected nodes may now run different software
� Data may be corrupted or destroyed
� Nodes can "tell lies" to confuse the administrators

� Explanation contains the provenance of the state
(based on concept from databases)
� Provenance should be tamper-evident: If the

adversary tells lies, we can reliably detect this
� Effect: Misbehaving nodes must give the correct

y p
own state to the administrator � To extract provenance, the system can be instru-

mented; in some cases (declarative languages,
'maybe' rules), extraction can be automated
� Detection can be guaranteed for observable

messages - that is, messages that directly or
indirectly affect at least one correct node
� The investigator must trust his local machine but

The SNooPy system

correctly diagnose the problem
Effect: Misbehaving nodes must give the correct
explanation (odiscovery) or tell a lie (odiscovery)

4 Protecting privacy with PVR Storing provenance with DTaP5 6

The investigator must trust his local machine, but
otherwise no trusted components are needed

Application

L

Graph
recorder

Microquery
module

Query processor

Primary system Provenance system

Users

Alice
Alice

Bob Charlie

Doris

Eliot

5 hops
2+1=3
hops

Bit k set to 1: "I have a route M kl
Log

Provenance
extractor

project (prov.RLoc, prov.RID, prov.RTime)
as execQuery(@RLoc, RID, Time)

execQuery(@RLoc, RID, Time) ruleExec(@RLoc, RID, Rule,
RTime, CList, Trigger)

execQuery.RID = ruleExec.RID

project (execQuery.RLoc, ruleExec.Trigger / ruleExec.CList[i], execQuery.Time)
as provQuery(@N, VID, Time)

First practical implementation of SNP

Log

Network
Users

� Widely applicable - evaluated with BGP inter-
domain routing, a DHT, and Hadoop MapReduce
D t ti t f ll

1 2 3 4 5 6

Bit k set to 1: I have a route
that is at most k hops long" 1 11 1 1 Merkle

hash tree
0

Problem: Provenance can reveal private data
� Solution: Special "distributed" zero-knowledge

proof that the provenance is valid
Hi hl ffi i t i l hi i h t

prov(@N, VID, Time, RID, RTime, RLoc)provQuery(@N, VID, Time)

prov.VID=provQuery.VID

Problem: Store & query provenance efficiently
� Builds a model of the system's workload and

automatically chooses most efficient data
structure to store the provenance

[TaPP'11, SIGMOD'11 demo, SOSP'11] [HotNets'11, SIGCOMM'12] [TaPP'12, VLDB'13]

� Detection guarantees formally proven
� Reasonable overhead
� Code available from http://snp.cis.upenn.edu/

� Highly efficient; single machine is enough to
handle an entire ISP's proof+verification load
� Provable detection and privacy guarantees

structure to store the provenance
� Can partially reconstruct the provenance graph

(only the parts that are needed to answer the query)

