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1 Problem: Secure forensics 2 Approach: Data provenance 3 Key ideas
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router's policy to redirect
traffic, so he can intercept it
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� Each node maintains a tamper-evident
log of all the messages it has sent
and received.

Scenario: Attacker has secretly compromised Idea: System should be able to "explain" its
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� If a compromised node modifies, 
forges, omits, or reorders messages, 
this can be detected
� Forensic investigator can audit

a node's log and replay it to 
reconstruct its execution
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some unknown part of a distributed system

Goal: Enable the administrators to detect and 

� Affected nodes may now run different software
� Data may be corrupted or destroyed
� Nodes can "tell lies" to confuse the administrators

� Explanation contains the provenance of the state
(based on concept from databases)
� Provenance should be tamper-evident: If the 

adversary tells lies, we can reliably detect this
� Effect: Misbehaving nodes must give the correct
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own state to the administrator � To extract provenance, the system can be instru-

mented; in some cases (declarative languages, 
'maybe' rules), extraction can be automated
� Detection can be guaranteed for observable 

messages - that is, messages that directly or 
indirectly affect at least one correct node
� The investigator must trust his local machine but

The SNooPy system

correctly diagnose the problem
Effect: Misbehaving nodes must give the correct
explanation (odiscovery) or tell a lie (odiscovery)

4 Protecting privacy with PVR Storing provenance with DTaP5 6

The  investigator must trust his local machine, but 
otherwise no trusted components are needed
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project (prov.RLoc, prov.RID, prov.RTime)
as execQuery(@RLoc, RID, Time)

execQuery(@RLoc, RID, Time) ruleExec(@RLoc, RID, Rule, 
RTime, CList, Trigger)

execQuery.RID = ruleExec.RID

project (execQuery.RLoc, ruleExec.Trigger / ruleExec.CList[i], execQuery.Time) 
as provQuery(@N, VID, Time)

First practical implementation of SNP
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� Widely applicable - evaluated with BGP inter-
domain routing, a DHT, and Hadoop MapReduce
D t ti t f ll

1 2 3 4 5 6

Bit k set to 1: I have a route 
that is at most k hops long" 1 11 1 1 Merkle 
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Problem: Provenance can reveal private data
� Solution: Special "distributed" zero-knowledge 

proof that the provenance is valid
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prov(@N, VID, Time, RID, RTime, RLoc)provQuery(@N, VID, Time)

prov.VID=provQuery.VID

Problem: Store & query provenance efficiently
� Builds a model of the system's workload and 

automatically chooses most efficient data 
structure to store the provenance

[TaPP'11, SIGMOD'11 demo, SOSP'11] [HotNets'11, SIGCOMM'12] [TaPP'12, VLDB'13]

� Detection guarantees formally proven
� Reasonable overhead
� Code available from http://snp.cis.upenn.edu/

� Highly efficient; single machine is enough to 
handle an entire ISP's proof+verification load
� Provable detection and privacy guarantees

structure to store the provenance
� Can partially reconstruct the provenance graph

(only the parts that are needed to answer the query)


