
The SNooPy system

Practical implementation of SNP

1 Problem: Secure forensics

Scenario: Attacker has secretly compromised
some unknown part of a distributed system

Goal: Enable the administrators to detect and
correctly diagnose the problem

§  Affected nodes may now run different software
§  Data may be corrupted or destroyed
§  Nodes can "tell lies" to confuse the administrators

2 Approach: Data provenance 3 Key ideas

§  Explanation contains the provenance of the state
(based on concept from databases)

§  Provenance should be tamper-evident: If the
adversary tells lies, we can reliably detect this

§  Effect: Misbehaving nodes must give the correct
explanation (→discovery) or tell a lie (→discovery)

Idea: System should be able to "explain" its
own state to the administrator

4 Storing the provenance Generalizing provenance 5 6

[TaPP'11, SIGMOD'11 demo, SOSP'11] [TaPP'12, VLDB'13]

Alice
important.com

A

C
B

Attacker has changed the
router's policy to redirect
traffic, so he can intercept it

Modified route

Old route

- route(Alice, r1)
+ route(Alice, r2)

available
(Alice, r1)

routingPolicy
(Alice, r2>r1)

+ available
(Alice, r2)

export
(B, Alice, r1)

route
(B, r1)

+ export
(A, Alice, r2)

exportOK
(B, r1)

route
(A, r2)

+ exportOK
(A, r2)

Application

Log

Graph
recorder

Microquery
module

Query processor

Primary system Provenance system

Network
Users

Alice

§  Widely applicable - evaluated with BGP inter-
domain routing, a DHT, and Hadoop MapReduce

§  Detection guarantees formally proven
§  Reasonable overhead
§  Code available from http://snp.cis.upenn.edu/

Log
Provenance
extractor

prov(@N, VID, Time, RID, RTime, RLoc) provQuery(@N, VID, Time)

prov.VID=provQuery.VID

project (prov.RLoc, prov.RID, prov.RTime)
as execQuery(@RLoc, RID, Time)

execQuery(@RLoc, RID, Time) ruleExec(@RLoc, RID, Rule,
RTime, CList, Trigger)

execQuery.RID = ruleExec.RID

project (execQuery.RLoc, ruleExec.Trigger / ruleExec.CList[i], execQuery.Time)
as provQuery(@N, VID, Time)

Problem: Store & query provenance efficiently
§  Builds a model of the system's workload and

automatically chooses most efficient data
structure to store the provenance

§  Can partially reconstruct the provenance graph
(only the parts that are needed to answer the query)

h14

h15

h16

h17

c16
s16
t16

c17
s17
t17

c15
s15
t15

§  Each node maintains a tamper-evident
log of all the messages it has sent
and received.

§  If a compromised node modifies,
forges, omits, or reorders messages,
this can be detected

§  Forensic investigator can audit
a node's log and replay it to
reconstruct its execution

§  To extract provenance, the system can be instru-
mented; in some cases (declarative languages,
'maybe' rules), extraction can be automated

§  Detection can be guaranteed for observable
messages - that is, messages that directly or
indirectly affect at least one correct node

§  The investigator must trust his local machine, but
otherwise no trusted components are needed

Secure Network Provenance

*University of Pennsylvania #Georgetown University

Andreas Haeberlen* Boon Thau Loo* Micah Sherr # Zachary G. Ives* Wenchao Zhou#
Ang Chen* Alexander Gurney* W. Brad Moore# Arjun Narayan* Hanjun Xiao* Yang Wu* Mingchen Zhao*

What if there are privacy concerns?
§  A special, highly efficient ZKP can help!
§  PVR algorithm [HotNets'11, SIGCOMM'12]

What about negative events (omissions)?
§  There is a negative 'twin' of provenance!
§  Negative provenance [HotNets'13, SIGCOMM'14]

Can covert channels be detected as well?
§  Yes – if we can reliably detect timing anomalies!
§  Time-deterministic replay [OSDI'14]

Can this help with root-cause analysis?
§  Yes – if we have a non-faulty reference event
§  Differential provenance [HotNets'15, SIGCOMM'16]

Can vulnerabilities be repaired automatically?
§  Need to consider code as well – not just data!
§  Meta-provenance [HotNets'15, NSDI'17]

Is this applicable to the data plane?
§  Reduce crypto cost, use hardware offloading!
§  Secure Packet Provenance [submitted]

CNS-1065130

