Secure the Electrical Power Grid: Smart Grid versus Smart Attacks

Smart Grid Security

- Core of future energy infrastructure
- Key to critical & strategical sectors
- Exposed to cyber-physical attacks

Technical Activities

Category	Investigations Conducted		
Targets	Substations	Lines	Joint
Schemes	Concurrent	LDV, RG, CIG	
	Sequential	SAG, Q-Attack	
Models	Topological	Complex Networks	Power Flow
Metrics	Netability	Extended Betwenness	Critical Moments
Solutions	Attack Risk Visualizers	Learning-Based Detectors	Self-Adaptive Controllers

Scientific Impact

- Complex behaviors and interdependence
- Coordinated attack schemes and impacts
- Intelligent detection, control, and optimization

Challenges

- Massive blackout vulnerability
- Emerging cyber-attack risks
- Legacy and unregulated systems

Significant Outcomes

fast vulnerability analysis

cascading failures

Critical Moment indicates system collapse

Steady-State Model simulates Self-Organized Maps identifies ArcGIS Visualization supports intuitive blackout analysis

Broader Impact

- Secure and resilient energy infrastructure
- 5 courses, 4 PhD students, 7 summer interns

critical components

• 26 journal, 1 survey, 2 best paper awards

CNS 1117314 - Team: Haibo He (PI), Yan Sun (Co-PI), Peter August (Senior Personnel) University of Rhode Island, Kingston, RI 02881 http://www.ele.uri.edu/faculty/he/