NSF National Workshop on Transportation Cyber-Physical Systems (CPS)

Breakout Session: UAVs

Dr. Christine M. Belcastro, Moderator NASA Langley Research Center

Dr. Sumit Kumar Jha, Scribe University of Central Florida

Goals / Capabilities Enabled by CPS Autonomy Technologies (1)

- 2015 Congress Challenge deploy UAS for civil use
- Single-Pilot and Pilot-Optional Operations for Commercial Transports
 - What is the challenge? Human as source of fault-tolerance; Variable autonomy; Dynamic partition of authority between human and UAS.
 - Terascale computing power available on-board. Faster than real-time safety monitoring.
 - Cargo vs Passenger
 - Current vs Future National Airspace System (NAS)
 - Nominal vs Hazardous Conditions
- Improved Monitoring & Disaster Response
 - Forest Fire
 - Border Patrol
 - Other
- Long-Duration Science Observation
 - Atmospheric / Environment
 - Other

Goals / Capabilities Enabled by CPS Autonomy Technologies (2)

- Point-to-Point and On-Demand Door-to-Door Autonomous Transportation of People & Goods in Future NAS
 - Integrated Muti-Modal Implementation (Ground and Air / Flying Car)
 - Other
- Co-ordinated and super-dense UAS operations
 - TBD
- Reliability vs. Economics: UAS is on one extreme and commercial aircrafts (3X) are on other extreme.
 - Possible danger to general pouplation
- Supervisory control beyond RC

Possible Technology Solutions (I)

- Real-time safety monitoring
 - based on heightened CPU capability
 - Definition of safety (temporal logics)
- Resilience
 - off-nominal and hazardous conditions
- Variable autonomy capability
- Technology scalability
- Synchronized operations
 - Large-scale distributed communications and control for (through GPS satellites).
 - Space / time segment deduction & coordination
- Local optimization methods and system architectures for air-traffic management.
- Detection and identification of UAV threats.
- Cost-reduction for complex, safe and secure software systems.
- Verification & Validation
 - Analysis and Simulation
 - Reduction in physical flight tests.
 - Open-source models and simulations (academia, government, and industry)
 - Nonlinear simulations, Robustness, Uncertainty Quantification, Loss of Control Prevention and Recovery

Possible Technology Solutions (II)

- New Clockwork for Time-Critical Systems
 - Dr. Gill's workshop report.
- Learning and autonomy methods and tools
 - Verifiable and certifiable learning tools
 - A priori verifiable learning algorithm
 - Bounded Uncertainty
 - Corner cases and their handling by inductive learning algorithms
- Control of UAVs in tight spaces, no line-of-sight
 - E.g. infrastructural assessment
- Control algorithms in GPS-denied environments
- Multi-modal UAVs (air and ground)
 - Support infrastructure for UAVs
- Situational awareness
 - Organizational vs. mission-oriented; autonomous systems.
- Sense and avoid
 - Broader than human abilities radar
- Application-driven requirements development
 - Definition of use-cases; RTCA set of 34 missions.
- Corridor allocation, management and enforcement
 - Clear dichotomy between passenger/military aircrafts vs. private micro-UAS
- Network-controlled CPS
 - Super-dense multi-vehicle systems

Capabilities-Driven Research Directions / Roadmap

5-10 years

- Improved Crew Situation Awareness / Guidance under Off-Nominal & Hazardous Conditions
- Limited Military (Small) UAVs in Commercial Airspace

10-15 Years

- Operator-Engaged Recovery
- Industrial UAVs in Commercial Airspace (Local / Regional)

15-25 Years

- Resilient Control Augmentation to Baseline Control System
- Widespread Industrial UAVs in Commercial Airspace (Cargo Transports)

>25 Years

- Real-Time Autonomous Systems for Transport Aircraft (Passenger)
 - Autonomous control interventions
- Real-Time Safety Assurance Systems

Need to sync with FAA, RTCA and other efforts.

Backup

Air Transportation Challenges

- System-wide Safety Assurance at All Levels
 - Current & Future NAS
 - Vehicle-Centric
 - NAS / Infrastructure & ATC/ATM
- Technology Certification
 - Validation & Verification (V&V) of Safety-Critical Autonomous Systems
 - Demonstrated Compliance with FARs
 - Human Interfaces (Onboard / Remote)
 - Variable Autonomy
- Trust
 - FAA
 - Airframe Manufacturers
 - Cargo Industry
 - Traveling Public
- Other

Discussion Outline

- Goals / Capabilities Enabled by CPS Technologies
- Air Transportation Challenges
- Technical Challenges
- Research Directions and Roadmap
- Other
 - Key Issues / Impediments

Technical Challenges

- Accident Prevention Understanding Complex Problems
 - Aircraft Loss of Control (LOC)
 - Controlled Flight into Terrain (CFIT)
 - others
- Autonomous Control
 - Real-Time Resilience under Hazardous Conditions
 - Hazards / Effects Detection, Identification, Mitigation
 - Dependable Sense and Avoid (Fixed & Moving Obstacles)
 - others
- Real-Time Safety Assurance
 - Vehicle-Centric
 - Multiple Vehicles
 - NAS / Infrastructure (including Faults and Security Threats)
 - others
- V&V / Certification
 - Analysis, Simulation, & Testing
 - Reliability under Technology Malfunctions (Error Propagation)
 - Model / Simulator Fidelity for Hazardous Conditions
 - Test Scenarios
 - Others
- Other

Other

Key Issues / Impediments

• Other