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Some predictions of (long-term) power

network architectures
Interstate EHV DC transmission connecting large
nuclear power plants (backbone network)
Closer to the end users a mix of

-highly distributed micro-grids with their own
back-up small power plants and/or connections
to the backbone

-medium-sized fossil fuel/gas power plants
Significant penetration of IT:

-Making micro-grids highly flexible (BOTH
reliable/secure and efficient!) with the end user
actively participating;

-Facilitating on-line coordination of the backbone
network and the micro-grids for reliability.



Today’s Hierarchical Systems—OId Infrastructure
Complex large electric networks, operated in stationary ways; no near-real time

automated\ monitoring and decision making
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Often overstressed and prone to failures, yet sustained under-utilization

Lots of equipment must be re-built (must understand engineering and policy
to decide what is the right way to put it together);
* Need IT, and faster control and numerical algorithms to enable timely decisions.



Functional Unbundling of Regulated Utilities (Deregulation)
New challenges brought about by industry restructuring (need to operate
real-time markets by means of IT; must know economics, policy, finance);

not working well now—the markets never were designed properly
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Future Network Vision

ALGORITHMS NEEDED FOR COPING WITH HARD-TO-PREDICT SCENARIOS; NEED FOR

IT-ENABLED FLEXIBLE UTILIZATION ESSENTIAL FOR RELIABLE, EFFICIENT, SECURE AND
SUSTAINABLE SERVICES
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VISION AND STRATEGY I ELECTRICITY NETWORKS OF THE FUTURE

Value added

THE KEY ROLE OF INFORMATION TECHNOLOGY e




Smart Grid— A means of implementing sustainability
(multiple tradeoffs)

Single optimization subject to
constraints (today)

Reconciling tradeoffs (new)

Schedule supply to meet given demand

Schedule supply to meet demand (both
supply and demand have costs assigned)

Provide electricity at a predefined tariff

Provide electricity at QoS determined by the
customers willingness to pay

Produce energy subject to a predefined CO,
constraint

Produce amount of energy determined by the
willingness to pay for CO, effects

Schedule supply and demand subject to
transmission congestion

Schedule supply, demand and transmission
capacity (supply, demand and transmission
costs assigned)

Build storage to balance supply and demand

Build storage according to customers
willingness to pay for being connected to a
stable grid

Build specific type of primary energy source
to meet long-term customer needs

Build specific type of energy source for well-
defined long-term customer needs, including
their willingness to pay for long-term service,
and its attributes

Build new transmission lines for forecast
demand

Build new transmission lines to serve
customers according to their ex ante (longer-
term) contracts for service




Distributed future energy systems —
Qualitatively NEW NETWORK SYSTEM ARCHITECTURES

-distributed sensors and actuators, with their IT network;
new models for planning and operations.
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Multi-layered interactive (dynamically aggregated) system
—Need for IT-enabled regrouping to reconcile tradeoffs
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Typical system input (load, wind, solar) —Need for prediction,
look ahead decision making, sensing;
OTHERWISE BLACKOUTS AND INEFFICIENCY
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Major R& D challenges:

* Understand the value of various technologies
under specific paradigms

* Develop operating, maintenance and planning
decision tools for all three paradigms and
their transitions

* Value IT for all three paradigms—this is
essential to catalyze innovation



The critical concept

* Flexible reliability-related risk management

* Closely related to the questions of back-up
power at times of price spikes/interruptions

* From extensive interconnections for reliability
to distributed reliability provision



Current efforts at CMU

e New SRC ERI/SGRC

* Based on the vision of Dynamic Monitoring
and Decision Systems (DYMONDS)

* First proof-of-concept Smart Grid Simulator for
systems with wind, demand side response,
PHEVs and conventional generation

-Possible to integrate high amounts of
intermittent resources in a sustainable way
and enable choice at value



Dynamic Monitoring and Decision
System (DYMONDS) [1]

* Conventional system operation
— Centralized decision making
* |SO knows and decides all

— Not proper for future electric energy systems

* Too many heterogeneous decision making components
: DGs, DRs, electric vehicles, LSEs, etc.

* Dynamic Monitoring Decision-making System (DYMONDS)

— Distributed decision making system

 Distributed optimization of multiple components = computationally
feasible

— Individual decisions submitted to ISO (as supply/demand bids)

* Individual inter-temporal constraints internalized
* Market clearance and overall system balanced by ISO



Modeling, Analysis and Decision
Making--Change of Paradigm

e Current power systems simulators
— Centralized optimization
— Information concentrated on ISO

e Future energy systems simulator (DYMONDS)

— Distributed optimization
- modularized simulation

— Appropriate information exchange between the
components

— Balance of the system by ISO



New DYMONDS Functionalities

Just-in-Time (JIT) --predictions; dynamic look-ahead
decision making

Just-in-Place (JIP) --distributed, interactive, multi-
layered

Just-in-Context (JIC) ---- performance objectives
function of organizational rules, rights, and
responsibilities (3Rs) and system conditions.

Sample examples of improved performance—on-
going work in EESG

http://www.eesg.ece.cmu.edu



Demonstration of Dynamic Monitoring and
Decision System (DYMONDS) for Sustainable
Energy Systems

http://www.eesg.ece.cmu.edu
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IEEE 24-bus Reliability Test System
(RTS) in GIPSYS [2]
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Current electric power systems

Static Dispatch with 0% Wind
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DYMONDS Simulator
Scenario 1: + Wind generation [3,4]
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DYMONDS Simulator
Scenario 1: + Wind generation
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DYMONDS Simulator

Scenario 2: + Price-responsive demanc
[3-5
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DYMONDS Simulator
Scenario 2: + Price-responsive demand

MPC-based DYI MPC-based DYMONDS Dispatch with 50% Wind
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DYMONDS Simulator
Scenario 3: + Electric vehicles [6]
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Optimal Control of Plug-in-Electric
Vehicles: Fast vs. Smart (Rotering)

Percent of Peak Load
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Information flow—Fantastic Use of
Multi-layered Dynamic Programming

Charge Plan P(t)
Charge Control
Price Forward
Curve Cg(t)
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DYMONDS Simulator
Scenario 4: + long-run decision making [4]

Marija Prica

————— ==

Long-run planning

of new generation

capacity installation

— Long-run marginal
bids

— For the next 10
years
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Forecasted Demand [MW]

DYMONDS Simulator
Scenario 4: + long-run decision making
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Scenario 4: + long-run decision making
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DYMONDS Simulator
Scenario 5: + PMU-Based Robust Control [7]
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DYMONDS Simulator
Scenario 5: + PMU-Based Robust Control

e System Load Curve [8]
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DYMONDS Simulator
Scenario 5: + PMU-Based Robust Control

* Robust AVC Illustration in NPCC System [7, 9]
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DYMONDS Simulator
Scenario 5: + PMU-Based Robust Control

* Robust AVC Illustration in NPCC System
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DYMONDS Simulator
Scenario 5: + PMU-Based Robust Control

* Robust AFC Illlustration in NPCC System [7, 9]
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DYMONDS Simulator

* Robust AFC lllustration in NPCC System
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A Broad View of the Smart Grid
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Long-term vision

Build a serious momentum in defining next
generation energy systems

Work with industry, other universities and
government to create a joint vision

Build user friendly simulators of future systems
in which quantifiable relations between the
technology, policy and economics can be
demonstrated

Help catalyze innovation, particularly ICT for
future energy systems

Help define policy in support of innovation
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