
Sonifying Cyber-Security Cues

Pls: Akbar Siami Namin, Rattikorn Hewett, and Keith Jones - Texas Tech University http://www.myweb.ttu.edu/asiamina/research_files/Sonification.html

Research Objectives

- Identify the security concerns of users who are visually impaired
- Design appropriate sonification to present security warnings and cues
- Study the emotional effects of sounds on users who are visually impaired

Sonification Challenges

- Design must convey the warning at different levels of danger to users
- The use of screen readers with Web browsers presents contents via speech sounds and difficult to

SENSIT

Dropping a Bomb

comprehend

 Visual cues can be lost when screen readers translate them to speech sounds

Earcon-based (Natural Sounds) Sonification Approach

Advantages of Using Natural Sounds

- Representational
- Easy to remember
- Easy to comprehend

User-Centric Information to Convey

- The "concept" or "meaning" of threats
- The "consequences" of threats
- The "actions" that should be taken in response to threats

Usability Testing

Sonified Three Security Threats / Cues

- Phishing
- Casting a Fishing Rod

Sonification Procedure

- The Creation of Sonification:
 - > Choosing a sonification approach

- Malvertising
 - Dropping a Bomb
- Form filling (typing sensitive information)
 - Typing on a Keynoard

✓ Representational (i.e., natural Sounds)

- Choosing sounds to represent the intention and meaning
 - ✓ User Centric

Results	Threat	Sonification	Correctly Identified	Average Pleasantness	Average Urgency	Average Conspicuity	Rated Best	Correctly Remembered	
Participants: 5 individuals who were visually impaired	Phishing	 Casting a Fishing Reel Breaking Glass Opening a Rusty Door 	80% 0% 0%	2.4 2.8 2.4	3.6 4 2.8	4.4 4.2 3	60% 40% 0%	40% 60% 60%	
	Malware Download	Dropping a BombPouring waterSounding a Siren	40% 20% 60%	3 3.2 2.6	4.2 2.8 4.6	5 4.4 4.8	20% 0% 80%	80% 40% 60%	
	Form- Filling	 Typing on a Keyboard Bubbling Water Playing a Slot Machine 	40% 20% 20%	3.4 3.4 3.2	3 3 4.4	2.8 4 5	100% 0% 0%	80% 80% 80%	

Interested in meeting the PIs? Attach post-it note below!

National Science Foundation WHERE DISCOVERIES BEGIN

The 3rd NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting January 9-11, 2017 January 9-11, 2017 Arlington, Virginia

