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Automated Cyberphysical System Verification
Many modern systems are
constructed from physical process
interacting with discrete computer
processes via communication
channels.

I physical processes modeled by
PDEs, SDEs, ODEs.

I computer algorithms/software
have discrete-state models.

I in this sense direct models are
usually hybrid, containing two
distinct state types.

Motivation: Development of automated verification
methods that can accommodate complex dynamics and
specifications.
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Technical Approach: Two Main Components

I Probabilistic models and specifications.
I Large-scale computation: stochastic

simulation.
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Accomplishments

Year 1:
I Stochastic simulation for continuous time Markov chains:

I Maginness, West, Dullerud, “Exact Simulation of Continuous Time
Markov Jump Processes with Anticorrelated Variance Reduced
Monte Carlo Estimation”, IEEE CDC; to appear 2014.

I Modeling with complex specifications:
I Wang, Roohi, West, Viswanathan, Dullerud, “Statistical Verification

of Nonlinear Systems”, submitted.
I Summer engineering camp for high-school girls.

Next Steps:
I Correlated sampling methods for verifying algorithms.
I Expanding class of models.
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G-BAM (Girls Building Awesome Machines)

Prosthetic limb prototypes Wind turbine prototypes

Synopsis
I 1 week residential engineering camp on campus.
I High-school girls (9th to 12th grade): 16 in 2013, 24 in 2014.
I Girls work with women mentors (students, alumni) on creative,

team-based design projects.
I By end of camp: 90% intend to study mechanical engineering.
I New mechatronics accelerometer-design activity added this year.
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Technical Approach: Two Main Components

I Probabilistic models and specifications.
I Large-scale computation: stochastic
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System Model

P<0.5(♦bad)

Specification

Model Checker

0.2 0.8

0.3
0.7

1.0

OK

Error

Quantitative
Results

8/55



What is Probabilistic Model Checking?

Overview
Probabilistic model checking is a automatic, formal verification technique for analysing
systems that exhibit stochastic behavior.

I Systems modeled by (finite state) Markov Chains, Markov Decision Process,
Continuous Time Markov Chains

I Properties reason over the measure space of executions. Allow one to quantify
reliability, performance, security. Examples include “probability of shutdown is
less than 0.02”, “the expected energy consumption is 15mW”

Algorithmic Approaches
I Exact Methods: Iterative algorithms that rely on techniques such as linear

programming, and numerical integration.
I Statistical: Simulate the system, and statistically estimate the correctness of the

system based on the sample executions drawn, using hypothesis testing
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Probability Propagation in Physics-based Models

PDE/ODE 
System 

 
Markov  
Process 

 
 

Can frequently be  
Converted to MC  

• Probability bounds 
• Output distributions 

• IC distribution 
• Uncertainty in physics 

• Distributions 
• Properties 
• Design tradeoffs 
• Provable bounds 

Poster yesterday; conference paper submitted 2014.
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Technical Approach: Two Main Components

I Probabilistic models and specifications.
I Large-scale computation: stochastic

simulation.
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Stochastic Simulation

Evolution of random processes through system dynamics

πt-1

E[Xt]
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Numerical approximation via simulation
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P. A. Maginnis, M. West, G. E. Dullerud, ”Exact Simulation of Continuous Time Markov Jump Processes with Anticorrelated Variance

Reduced Monte Carlo Estimation”, IEEE CDC; to appear 2014.
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Example: Mean Estimators

δt
N

µt

t
N

µt
δt

N
µt

Suppose X is a process under consideration with mean behavior
µ := E[X]. Define a mean estimator δN , a random variable such that
δN → µ as N →∞. Observe:

E
[∥∥δN − µ

∥∥] 6 E
[∥∥δN − E[δN ]

∥∥]+
∥∥E[δN ] − µ

∥∥

6
√

tr Cov(δN) +
∥∥E[δN ] − µ

∥∥

So, in some sense, error scales with an estimator’s variance and bias.
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Overview

1. Stochastic Simulation and Poisson Variance Reduction

2. Finite Channel Markov Processes and τ-Leaping

3. Continuous Process Variance Reduction
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Motivation

I Stochastic simulation: Applicable to problems from physical
modeling to control and estimation.

I Classic problem is estimation of the mean behavior based on
random samples. Convergence of n averaged estimates is sure
but slow O( 1√

n ).
I How to reduce costs? Variance reduction: 2 orders of magnitude

reduction in error of 1000 particle simulation.
I Property of method:

I samples are fair draws;
I ensemble members correlated.

I Tau-leaping: a fast, cheap algorithm to discretely approximate
Markov processes.

I We apply variance reduction to the Poisson samples used to
“tau-leap”.
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Motivation

Consider the nonlinear evolution of a continuous-time stochastic
process, given by:

X(t) = X(0) +
I∑

i=1

Y i




t∫
0

ρi(s, X(s)) ds


 ζi,

where Y i is a random process. Numerical integration =⇒
corresponding discrete-time stochastic process:

X̃`+1 = X̃` +
I∑

i=1

Si
`

(
ρi(t`, X̃`

)
τ
)
ζi,

where Si
` is also random.

I Mean pathwise behavior? Analytical solution is impossible.
I Estimation by simulation.
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Example: Building Population Dynamics
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Figure: Six node graph of O’Hare International Airport’s domestic terminals.
State Xt ∈ R6 is the population of each node.
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Sample Paths - Chemistry Model
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Basic Approach Illustrated: Poisson Random
Variables

I Poisson distribution Pois(λ) takes real parameter λ > 0.
I If X ∼ Pois(λ) then P(X = q) = e−λλq

q! . E[X] = Var(X) = λ. Defines
Poisson process: number of arrivals in a unit of time if arrivals
occur at rate λ and are independent of the time since the last
arrival.

I Define the generalized inverse of the CDF of a Poisson random
variable with parameter λ to be

F−1
λ (u) := I {q:Fλ(q)>u}

I F−1
λ (U) ∼ Pois(λ) if U ∼ Unif(0, 1).
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Poisson Sampling
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Poisson Mean Estimation

Let’s construct the naive Monte Carlo Poisson mean estimator:

UN
k

i.i.d.
∼ Unif(0, 1)

RN
k := F−1

λ (UN
k )

δN,n :=
1
n

n∑
k=1

RN
k .

I Strong Law of Large Numbers: limn→∞ δN,n = λ

I Var(δN,n) = 1
n Var(RN

k ) =
λ
n

I Can we do better? Is i.i.d. sampling a necessary condition?
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Antithetic
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Antithetic

The antithetic Poisson mean estimator can be defined:

UA
k

i.i.d.
∼ Unif(0, 1)

RA
k,1 := F−1

λ (UA
k )

RA
k,2 := F−1

λ (1 − UA
k )

δA,2n :=
1
2n

n∑
k=1

(
RA

k,1 + RA
k,2

)
.

I Observe that RA
k,1, RA

k,2 are not independent.
I Cov(RA

k,1, RA
k,2) 6 0.

Motivated by

Var
(

X + Y
2

)
=

1
4

Var(X) +
1
4

Var(Y) +
1
2

Cov(X, Y).
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Stratified
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Stratified

Construct the stratified Poisson mean estimator by partitioning [0, 1)
into Aj :=

[ j−1
M , j

M

)
for j = 1, . . . , M:

US
k,j

i.i.d.
∼ Unif(Aj) for j = 1, . . . , M

RS
k,j := F−1

λ (US
k,j) for j = 1, . . . , M

δS,Mn
M :=

1
Mn

n∑
k=1

M∑
j=1

RS
k,j.

I Observe that RS
k,1 6∼ RS

k,2 6∼ · · · 6∼ RS
k,M.

I Here 1
M

∑M
j=1 RS

k,j serves as our point estimate to be averaged.
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Hybrid
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Hybrid

Finally, we combine the antithetic and stratified techniques to
construct the hybrid Poisson mean estimator for an even number M of
strata:

UH
k,j

i.i.d.
∼ Unif(Aj) for j = 1, . . . , M

2

UH
k,j := 1 − UH

k,M−j+1 for j = (M
2 + 1), . . . , M

RH
k,j := F−1

λ (UH
k,j) for j = 1, . . . , M

δH,Mn
M :=

1
Mn

n∑
k=1

M∑
j=1

RH
k,j.

I RH
k,j1 , RH

k,j2 are not independent iff j1 + j2 = M + 1.
I RH

k,j ∼ RS
k,j
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Analytical Results

Theorem
Our estimators are unbiased and consistent.

Theorem
For λ < ln 2,

Var
(
δA,2n) = 1

n

(
λ

2
−
λ2

2

)
.

For λ < ln M
M−1 ,

Var
(
δS,Mn

M

)
=

1
n

(
λ

M
−

M − 1
M

λ2
)

.
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Analytical Results

Theorem
For every Poisson parameter λ > 0 and even number of strata M > 2,

Var(δH,M
M ) 6 Var(δA,M) 6 Var(δN,M),

Var(δH,M
M ) 6 Var(δS,M

M ) 6 Var(δN,M).

I Stratified and antithetic sampling perform better in different
regimes of λ and M.

I Result proves that regardless of operating parameters, a single
method will always perform better than either.

I Useful in applications where Poisson parameter not known a
priori.
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Numerical Results
Estimator Variance Ratio versus Number of Strata, λ = 20
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Overview

1. Stochastic Simulation and Poisson Variance Reduction

2. Finite Channel Markov Processes and τ-Leaping

3. Continuous Process Variance Reduction
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Random Time-Change Representation for Markov
Processes

We may represent a Markov process X(t) ∈ RD with I event channels
that produce transitions ζi at rates given by rate functions ρi(t, X(t)),
as:

X(t) = X(0) +
I∑

i=1

Y i




t∫
0

ρi(s, X(s)) ds


 ζi,

where Y i is a unit-rate Poisson process and t ∈ [0, T].
I Can be simulated exactly, often via Gillespie’s (1975) stochastic

simulation algorithm (SSA).
I Simulation is costly when transitions occur frequently.
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Example System: Chemical Reactions

Consider the chemical reactions

X1 → 2X2 2X2 → 2X3

2X3 → 2X4 2X4 → 2X1,

with appropriate propensities. This can be represented via the
Markov process X ∈ R4 starting from X0 = [N 0 0 0]> with I = 4
reaction channels, defined by:

ζ1 = [−1 2 0 0]> ρ1(t, X) = 0.05X1

ζ2 = [0 −2 2 0]> ρ2(t, X) = 0.01N−1X2(X2 − 1)

ζ3 = [0 0 −2 2]> ρ3(t, X) = 0.05N−1X3(X3 − 1)

ζ4 = [2 0 0 −2]> ρ4(t, X) = 0.02N−1X4(X4 − 1),

where N is the representative system size (number of particles scale).
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Tau-Leaping Approximation

Gillespie (2001): approximate SSA by discretizing time. For time-step
increment τ, let t` = `τ and X̃` ≈ X(t`) for ` ∈ {0, . . . , L}, where
L := max{` : t` 6 T}. Then X̃` evolves via:

X̃`+1 = X̃` +
I∑

i=1

Si
`

(
ρi(t`, X̃`

)
τ
)
ζi,

where Si
`(λ) ∼ Pois(λ).

For compactness, define λi
` = ρ

i
(
t`, X̃`

)
τ and denote Si

`

(
λi
`

)
by Si

`.
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Pathwise Mean Estimators

I We’d like estimates of the mean Pathwise behavior of the
approximate Markov process.

I Naive Pathwise Monte Carlo:

ΨN
M :=

1
M

M∑
r=1

X̃r,

where X̃r are i.i.d. sample paths from the tau-leaping model.
I X̃r,`: state of the rth path at time `
I ΨN

M,`: value of the estimator at time `
I Can we reduce the variance (error) of these estimates?
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Naive Monte Carlo Pathwise Mean Estimation
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Hybrid Pathwise Mean Estimation
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Variance Reduced Pathwise Mean Estimators

For any variance reduction technique α ∈ {A, S, H}, define the
variance reduced pathwise mean estimator

ΨαM :=
1
M

M∑
r=1

X̃αr .

Define the pathwise Mean Square Error (MSE) of an estimation
method to be

MSE (ΨαM) = E
[ L∑
`=0

∥∥∥ΨαM,` − E[ΨαM,`]
∥∥∥

2
]
,

where ‖x‖2 = x>x.
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Case: State Independent Rates

In general, the Poisson parameter λα,i
r,` of Sα,i

r,` depends on current
state X̃αr,`. Thus it depends on past inputs for each reaction channel.
But state-independent rates =⇒ λα,i

r,` = λi
` = gi(t`).

I Decouples Poisson variables in time.
I Allows for extension of pure Poisson estimation results to

pathwise estimation. Namely:

Theorem
If propensity rates are state-independent, then

MSE
(
ΨH

M

)
6 MSE

(
ΨA

M

)
6 MSE

(
ΨN

M

)

MSE
(
ΨH

M

)
6 MSE

(
ΨS

M

)
6 MSE

(
ΨN

M

)

for every even number of strata M.
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Numerical Results

MSE Ratio versus Number of Particles Scale N, with M = 4
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I Typical Poisson parameter λ used in simulation roughly follows
λ ∝ N.
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Numerical Results (con.)

MSE Ratio versus Number of Strata M, with N = 103
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I Only qualitative deviation from Poisson case.
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Overview

1. Stochastic Simulation and Poisson Variance Reduction

2. Finite Channel Markov Processes and τ-Leaping

3. Continuous Process Variance Reduction
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Motivation

We develop algorithms for the simulation of continuous sample paths
of Markov jump processes that introduce negative correlation
between samples as a variance reduction technique.

I Leverage pointwise techniques for pathwise variance reduction in
continuous time.

I Applicable beyond tau-leaping context.
I No error due to time discretization, unbiased, consistent.

Note: for ease of illustration all variance reduction techniques are
taken to be antithetic, though extension to stratified and hybrid are
straightforward.
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Markov Jump Process Model

Recall, the random time-change representation of a Markov jump
process

X(t) = X(0) +
I∑

i=1

Y i




t∫
0

ρi(s, X(s)) ds


 ζi,

where ρ is some rate function and ζi characterize the transition of a
single reaction channel. All random input to sample path due to unit
rate Poisson processes Y i.

How do we anticorrelate Poisson process sample paths?
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Poisson Process Simulation
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Figure: Sample path of a unit rate Poisson process.

Recall: For a given time T > 0 and unit rate Poisson process Y,
Y(T) ∼ Pois(T). Conditioned on number of arrivals in a time interval,
arrival times are uniformly distributed.
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Endpoint Technique

I Sample {Y i(T)} using pointwise variance reduction techniques
I Simulate the corresponding jump times
τi

j
i.i.d.
∼ Unif([0, T]), j = 1, . . . , Y i(T).
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Figure: Two sample paths of a unit rate Poisson process. In this case
Y1(10), Y2(10) ∼ Pois(10) are antithetically paired.
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Endpoint Technique Variance
Variance of the pathwise mean estimator is reduced over all of (0, T],
not just at the endpoint.
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Figure: Variance of a 4-sample Poisson process antithetic endpoint mean estimator,
compared to the naive 4-point estimator variance Var(Ψ4

t ).
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Concatenation

Challenge: Can we improve performance (i.e. reduce variance)
further in the interior?

I Concatenate endpoint correlated processes to produce new
increments.
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Figure: Sample Y1(5), Y2(5)
anti.
∼ Pois(5) and

(Y1(10) − Y1(5)), (Y2(10) − Y2(5))
anti.
∼ Pois(5).
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Concatenation Technique Variance
Significant gains in neighborhood of t = 5; slight sacrifice at t = 10.
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Figure: Same as above with variance of a 4-sample Poisson process 2-step
concatenated antithetic mean estimator.
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Concatenation
Concatenation is not a panacea. The sum of independent,
nonzero-variance random variables produces an additive drift from
desired endpoint performance.
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Figure: Same as above with variance of a 4-sample Poisson process 16-step
concatenated antithetic mean estimator.
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Binomial midpoint

Modified Challenge: Can we improve performance (i.e. reduce
variance) in the interior without sacrificing endpoint performance?

I Recall: Y(T/2)|Y(T) ∼ Binom(Y(T), 1/2).
I We can apply variance reduction to this binomial sampling to

achieve a similar effect as in the Poisson r.v. case.
I Further, we can recursively iterate this midpoint sampling to finer

and finer midpoints.

I e.g. (1) {Y i(T)}
anti.
∼ Pois(T),

(2) {Y i(T/2)|Y i(T)}
anti.
∼ Binom(Y i(T), 1/2),

(3a) {Y i(T/4)|Y i(T/2)}
anti.
∼ Binom(Y i(T/2), 1/2),

(3b)
{Y i(3T/4)|Y i(T/2), Y i(T)}

anti.
∼ Binom(Y i(T)−Y i(T/2), 1/2)+Y i(T/2),

etc.
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variance) in the interior without sacrificing endpoint performance?

I Recall: Y(T/2)|Y(T) ∼ Binom(Y(T), 1/2).
I We can apply variance reduction to this binomial sampling to

achieve a similar effect as in the Poisson r.v. case.
I Further, we can recursively iterate this midpoint sampling to finer

and finer midpoints.

I e.g. (1) {Y i(T)}
anti.
∼ Pois(T),

(2) {Y i(T/2)|Y i(T)}
anti.
∼ Binom(Y i(T), 1/2)

,
(3a) {Y i(T/4)|Y i(T/2)}

anti.
∼ Binom(Y i(T/2), 1/2),

(3b)
{Y i(3T/4)|Y i(T/2), Y i(T)}

anti.
∼ Binom(Y i(T)−Y i(T/2), 1/2)+Y i(T/2),

etc.
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Binomial Midpoint
Once we sample state values at these time points, we uniformly
sample jump times to produce Poisson process realizations.
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Figure: Y i(10)
anti.
∼ Pois(10) is sampled first, then Y i(5)|Y i(10)

anti.
∼ Binom(10, 1/2), and

finally Y i(2.5)|Y i(5)
anti.
∼ Binom(5, 1/2) and

Y i(7.5)|Y i(5), Y i(10)
anti.
∼ Binom(5, 1/2) + Y i(5). Jump times follow.
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Binomial Midpoint Variance

Same variance at t = 10 as endpoint technique, comparable
performance at t = 5 to concatenation.
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Figure: Same as above with variance of a 4-sample Poisson process 2-step binomial
midpoint antithetic mean estimator.
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Binomial Midpoint Covariance
Scales up well as number of midpoints increases. Method saturates
when midpoints become nearly constant, i.e. when << 1 transition
expected in interval.
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Figure: Same as above with variance of a 4-sample Poisson process 16-step binomial
midpoint antithetic mean estimator.
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