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The emergence of synchronization in a network of coupled oscilla-
tors is a fascinating topic in various scientific disciplines. A widely-
adopted model of a coupled oscillator network is characterized by a
population of heterogeneous phase oscillators, a graph describing the
interaction among them, and diffusive and sinusoidal coupling. It is
known that a strongly coupled and sufficiently homogeneous network
synchronizes, but the exact threshold from incoherence to synchrony
is unknown. Here we present a novel, concise, and closed-form con-
dition for synchronization of the fully nonlinear, non-equilibrium, and
dynamic network. Our synchronization condition can be stated ele-
gantly in terms of the network topology and parameters, or equiv-
alently in terms of an intuitive, linear, and static auxiliary system.
Our results significantly improve upon the existing conditions advo-
cated thus far, they are provably exact for various interesting network
topologies and parameters, they are statistically correct for almost
all networks, and they can be applied equally to synchronization
phenomena arising in physics and biology as well as in engineered
oscillator networks such as electric power networks. We illustrate the
validity, the accuracy, and the practical applicability of our results in
complex networks scenarios and in smart grid applications.
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The scientific interest in the synchronization of coupled
oscillators can be traced back to Christiaan Huygens’ seminal
work on “an odd kind sympathy” between coupled pendulum
clocks [1], and it continues to fascinate the scientific commu-
nity to date [2, 3]. A mechanical analog of a coupled oscillator
network is shown in Figure 1 and consists of a group of parti-
cles constrained to rotate around a circle and assumed to move
without colliding. Each particle is characterized by a phase
angle θi and has a preferred natural rotation frequency ωi.
Pairs of interacting particles i and j are coupled through an
elastic spring with stiffness aij . Intuitively, a weakly coupled
oscillator network with strongly heterogeneous natural fre-
quencies ωi does not display any coherent behavior, whereas a
strongly coupled network with sufficiently homogeneous nat-
ural frequencies is amenable to synchronization. These two
qualitatively distinct regimes are illustrated in Figure 1.
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Fig. 1. Mechanical analog of a coupled oscillator network (a) and its dynamics in a

strongly coupled (b) and weakly coupled (c) network. With exception of the coupling

weights aij , all parameters in the simulation (b) and (c) are identical.

Formally, the interaction among n such phase oscilla-
tors is modeled by a connected graph G(V, E , A) with nodes
V = {1, . . . , n}, edges E ⊂ V × V, and positive weights
aij > 0 for each undirected edge {i, j} ∈ E . For pairs of non-
interacting oscillators i and j, the coupling weight aij is zero.
We assume that the node set is partitioned as V = V1∪V2, and
we consider the following general coupled oscillator model:

Miθ̈i +Diθ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ V1 ,

Diθ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ V2 .

[1]

The coupled oscillator model [1] consists of the second-order
oscillators V1 with Newtonian dynamics, inertia coefficients
Mi, and viscous damping Di. The remaining oscillators V2

feature first-order dynamics with time constants Di. A perfect
electrical analog of the coupled oscillator model [1] is given by
the classic structure-preserving power network model [4], our
enabling application of interest. Here, the first and second-
order dynamics correspond to loads and generators, respec-
tively, and the right-hand sides depict the power injections ωi
and the power flows aij sin(θi − θj) along transmission lines.

The rich dynamic behavior of the coupled oscillator
model [1] arises from a competition between each oscilla-
tor’s tendency to align with its natural frequency ωi and
the synchronization-enforcing coupling aij sin(θi − θj) with
its neighbors. If all natural frequencies ωi are identical, then
the coupled oscillator dynamics [1] collapse to a trivial phase-
synchronized equilibrium, where all angles θi are aligned. The
dissimilar natural frequencies ωi, on the other hand, drive
the oscillator network away from this all-aligned equilibrium.
Moreover, even if the coupled oscillator model [1] synchro-
nizes, the motion of its center of mass still carries the flux of
angular rotation, respectively, the flux of electric power from
generators to loads in a power grid. In spite of all these com-
plications, the main result of this article is that, for a broad
range of network topologies and parameters, an elegant and
easy to verify criterion characterizes synchronization of the
nonlinear and non-equilibrium dynamic oscillator model [1].

Review of Synchronization in Oscillator Networks
The coupled oscillator model [1] unifies various models in
the literature including dynamic models of electric power net-
works. The supplementary information (SI) discusses mod-
eling of electric power networks in detail. For V2 = ∅, the
coupled oscillator model [1] appears in synchronization phe-
nomena in animal flocking behavior [5], populations of flashing
fireflies [6], crowd synchrony on London’s Millennium bridge
[7], as well as Huygen’s pendulum clocks [8]. For V1 = ∅, the
coupled oscillator model [1] reduces to the celebrated Ku-
ramoto model [9], which appears in coupled Josephson junc-
tions [10], particle coordination [11], spin glass models [12, 13],
neuroscience [14], deep brain stimulation [15], chemical oscil-
lations [16], biological locomotion [17], rhythmic applause [18],
and countless other synchronization phenomena [19, 20, 21].
Finally, coupled oscillator models of the form [1] are canonical
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models of coupled limit cycle oscillators [22] and serve as pro-
totypical examples in complex networks studies [23, 24, 25].

The coupled oscillator dynamics [1] feature the synchro-
nizing effect of the coupling described by the graph G(V, E , A)
and the de-synchronizing effect of the dissimilar natural fre-
quencies ωi. The complex network community asks questions
of the form “what are the conditions on the coupling and the
dissimilarity such that a synchronizing behavior emerges?”
Similar questions appear also in all the aforementioned ap-
plications, for instance, in large-scale electric power systems.
Since synchronization is pervasive in the operation of an in-
terconnected power grid, a central question is “under which
conditions on the network parameters and topology, the cur-
rent load profile and power generation, does there exist a syn-
chronous operating point [26, 27], when is it optimal [28],
when is it stable [29, 30], and how robust is it [31, 32, 33, 34]?”
A local loss of synchrony can trigger cascading failures and
possibly result in wide-spread blackouts. In the face of the
complexity of future smart grids and the integration chal-
lenges posed by renewable energy sources, a deeper under-
standing of synchronization is increasingly important.

Despite the vast scientific interest, the search for sharp,
concise, and closed-form synchronization conditions for cou-
pled oscillator models of the form [1] has been so far in vain.
Loosely speaking, synchronization occurs when the coupling
dominates the dissimilarity. Various conditions have been pro-
posed to quantify this trade-off [21, 34, 30, 25, 35, 23, 24, 33,
36]. The coupling is typically quantified by the nodal degree
or the algebraic connectivity of the graph G, and the dissimi-
larity is quantified by the magnitude or the spread of the nat-
ural frequencies ωi. Sometimes, these conditions can be evalu-
ated only numerically since they depend on the network state
[34, 33] or arise from a non-trivial linearization process, such
as the Master stability function formalism [23, 24]. To date,
exact synchronization conditions are known only for simple
coupling topologies [17, 21, 37, 38]. For arbitrary topologies
only sufficient conditions are known [34, 30, 25, 35, 33] as well
as numerical investigations for random networks [39, 40, 41].
Simulation studies indicate that the known sufficient condi-
tions are very conservative estimates on the threshold from
incoherence to synchrony. Literally, every review article on
synchronization concludes emphasizing the quest for exact
synchronization conditions for arbitrary network topologies
and parameters [20, 21, 19, 23, 24]. In this article, we present
a concise and sharp synchronization condition which features
elegant graph-theoretic and physical interpretations.

Novel Synchronization Condition
For the coupled oscillator model [1] and its applications, the
following notions of synchronization are appropriate. First, a
solution has synchronized frequencies if all frequencies θ̇i are
identical to a common constant value ωsync. If a synchronized
solution exists, it is known that the synchronization frequency
is ωsync =

∑n
k=1 ωk/

∑n
k=1 Dk and that, by working in a ro-

tating reference frame, one may assume ωsync = 0. Second, a
solution has cohesive phases if every pair of connected oscilla-
tors has phase distance smaller than some angle γ ∈ [0, π/2[,
that is, |θi − θj | ≤ γ for every edge {i, j} ∈ E .

Based on a novel analysis approach to the synchronization
problem, we propose the following synchronization condition
for the coupled oscillator model [1]:

Sync condition: The coupled oscillator model [1] has
a unique and stable solution θ∗ with synchronized fre-
quencies and cohesive phases |θ∗i − θ∗j | ≤ γ < π/2 for

every pair of connected oscillators {i, j} ∈ E if∥∥L†ω∥∥E,∞ ≤ sin(γ) . [2]

Here, L† is the pseudo-inverse of the network Laplacian
matrix L and ‖x‖E,∞ = max{i,j}∈E |xi−xj | is the worst-

case dissimilarity for x=(x1, . . . , xn) over the edges E .

We establish the broad applicability of the proposed condition
[17] to various classes of networks via analytical and statisti-
cal methods in the next section. Before that, we provide some
equivalent formulations for condition [2] in order to develop
deeper intuition and obtain insightful conclusions.

Complex network interpretation: Surprisingly, topo-
logical or spectral connectivity measures such as nodal degree
or algebraic connectivity are not key to synchronization. In
fact, these often advocated [34, 30, 35, 33, 25, 23, 24] connec-
tivity measures turn out to be conservative estimates of the
synchronization condition [17]. This statement can be seen
by introducing the matrix U of orthonormal eigenvectors of
the network Laplacian matrix L with corresponding eigenval-
ues 0 = λ1 < λ2 ≤ · · · ≤ λn. From this spectral viewpoint,
condition [17] can be equivalently written as∥∥U diag

(
0, 1/λ2, . . . , 1/λn

)
·
(
UTω

)∥∥
E,∞ ≤ sin(γ) . [3]

In words, the natural frequencies ω are projected on the net-
work modes U , weighted by the inverse Laplacian eigenval-
ues, and ‖ · ‖E,∞ evaluates the worst-case dissimilarity of
this weighted projection. A sufficient condition for the in-
equality [3] to be true is the algebraic connectivity condition
λ2 ≥ ‖ω‖E,∞ · sin(γ). Likewise, a necessary condition for
inequality [3] is 2 · deg(G) ≥ λn ≥ ‖ω‖E,∞ · sin(γ), where
deg(G) is the maximum nodal degree in the graph G(V, E , A).
Clearly, when compared to [3], this sufficient condition and
this necessary condition feature only one of n − 1 non-zero
Laplacian eigenvalues and are overly conservative.

Kuramoto oscillator perspective: Notice, that in the
limit γ → π/2, condition [17] suggests that there exists a
stable synchronized solution if∥∥L†ω∥∥E,∞ < 1 . [4]

For classic Kuramoto oscillators coupled in a complete graph
with uniform weights aij = K/n, the synchronization condi-
tion [16] reduces to the condition K > maxi,j∈{1,...,n} |ωi −
ωj |, known for the classic Kuramoto model [21].

Power network perspective: In power systems engi-
neering, the equilibrium equations of the coupled oscillator
model [1], given by ωi =

∑n
j=1 aij sin(θi−θj), are referred to

as the AC power flow equations, and they are often approxi-
mated by their linearization [31, 32, 33, 34] ωi =

∑n
j=1 aij(θi−

θj), known as the DC power flow equations. In vector nota-
tion the DC power flow equations read as ω = Lθ, and their
solution satisfies max{i,j}∈E |θi − θj | = ‖L†ω‖E,∞. Accord-

ing to condition [17], the worst phase distance ‖L†ω‖E,∞
obtained by the DC power flow equations needs to be less or
equal than sin(γ), such that the solution to the AC power flow
equations satisfies max{i,j}∈E |θi − θj | ≤ γ. Hence, our condi-
tion extends the common DC power flow approximation from
infinitesimally small angles γ � 1 to large angles γ ∈ [0, π/2[.

Auxiliary linear perspective: As detailed in the previ-
ous paragraph, the key term L†ω in condition [17] equals the
phase differences obtained by the linear Laplacian equation
ω = Lθ. This linear interpretation is not only insightful but
also practical since condition [17] can be quickly evaluated by
numerically solving the linear system ω = Lθ. This linear sys-
tem is possibly of high dimension, but it inherits the sparsity
of the graph G(V, E , A). Thus, condition [17] can be veri-
fied efficiently even for large-scale sparse networks. Despite
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this linear interpretation, we emphasize that our derivation of
condition [17] is not based on any linearization arguments.

Energy landscape perspective: Condition [17] can
also be understood in terms of an appealing energy landscape
interpretation. The coupled oscillator model [1] is a system
of particles that aim to minimize the energy function

E(θ) =
∑
{i,j}∈E

aij
(
1− cos(θi − θj)

)
−
∑n

i=1
ωi · θi ,

where the first term is a pair-wise nonlinear attraction among
the particles, and the second term represents the external
force driving the particles away from the “all-aligned” state.
Since the energy function E(θ) is difficult to study, it is nat-
ural to look for a minimum of its second-order approximation
E0(θ) =

∑
{i,j}∈E aij(θi−θj)

2/2−
∑n
i=1 ωi ·θi, where the first

term corresponds to a Hookean potential. Condition [17] is
then restated as follows: E(θ) features a phase cohesive min-
imum with interacting particles no further than γ apart if
E0(θ) features a minimum with interacting particles no fur-
ther from each other than sin(γ), as illustrated in Figure 2.
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Fig. 2. The energy function E(θ) and its quadratic approximation E0(θ) for a

two-particle system are shown as solid and dashed curves, respectively, for the stable

(blue), marginal (green) and unstable (red) cases. The circles and diamonds represent

stable critical points of E(θ) and E0(θ).

Analytical and Statistical Results
Our analysis approach to the synchronization problem is
based on algebraic graph theory. We propose an equivalent re-
formulation of the synchronization problem, which reveals the
crucial role of cycles and cut-sets in the graph and ultimately
leads to the synchronization condition [17]. In particular, we
analytically establish the synchronization condition [17] for
the following six interesting cases:

Analytical result: The synchronization condition
[17] is necessary and sufficient for (i) the sparsest
(acyclic) and (ii) the densest (complete and uniformly
weighted) network topologies G(V, E , A), (iii) the best
(phase synchronizing) and (iv) the worst (cut-set in-
ducing) natural frequencies, (v) for cyclic topologies of
length strictly less than five, (vi) for arbitrary cycles
with symmetric parameters, (vii) as well as combina-
tions of networks each satisfying one of the conditions
(i)-(vi), which are connected to another and share no
common cycles.

A detailed and rigorous mathematical derivation and state-
ment of the above analytical result can be found in the SI.

In many applications, the natural frequencies ωi and cou-
pling weights aij are known only with a certain degree of ac-
curacy, or they may be variable within certain ranges. For
instance, in power networks these variations arise from un-
certain demand or unmodeled voltage dynamics. In order to
address these uncertainties, condition [17] can be extended
to a robust synchronization condition for variable parameters
ωi ≤ ωi ≤ ωi and 0 < aij ≤ aij ≤ aij . In this case, it is nec-

essary and sufficient to verify condition [17] at the vertices
of the parameter space ωi ∈ {ωi , ωi} and aij ∈ {aij , aij} to

guarantee condition [17] for all possible parameter variations.
The detailed results are reported in the SI.

After having analytically established condition [17] for
a variety of particular network topologies and parameters,
we establish its correctness and predictive power for a broad
range of networks. Extensive simulation studies lead to the
conclusion that the proposed synchronization condition [17]
is statistically correct. In order to verify this hypothesis, we
conducted Monte Carlo simulation studies over a wide range
of natural frequencies ωi, network sizes n, coupling weights
aij , and different random graph models of varying degrees of
sparsity and randomness. We select a set of nominal network
models with topologies constructed from Erdös-Rényi graphs,
random geometric graphs, and Watts-Strogatz small world
networks, and the natural frequencies and coupling weights
are sampled from uniform distributions. In total, we con-
structed 1.2 ·106 samples of such nominal networks, each with
a connected graph G(V, E , A) and natural frequencies ω sat-
isfying ‖L†ω‖E,∞ ≤ sin(γ) for some γ < π/2. The detailed
construction and the precise results can be found in the SI and
allow us to establish the following probabilistic result with a
confidence level of at least 99% and accuracy of at least 99%:

Statistical result for nominal networks: With
99.97 % probability, for a nominal network, condition
[17] guarantees the existence of an unique and stable
solution θ∗ with synchronized frequencies and cohesive
phases |θ∗i − θ∗j | ≤ γ for every connected pair {i, j} ∈ E .

From this statistical result, we deduce that the proposed syn-
chronization condition [17] holds true for almost all topolo-
gies and parameters of the considered nominal network mod-
els. Indeed, we also show the existence of possibly-thin sets
of network topologies and parameters for which our condition
[17] is not sufficiently tight. We refer to the SI for an explicit
family of carefully engineered and “degenerate” counterexam-
ples. Overall, our analytical and statistical results validate the
correctness of the proposed condition [17].

After having established the statistical correctness of con-
dition [17], we now investigate its predictive power for arbi-
trary networks. Since we analytically establish that condition
[17] is exact for sufficiently small pairwise phase cohesive-
ness |θi − θj | � 1, we now investigate the other extreme,
max{i,j}∈E |θi − θj | = π/2. To test the corresponding condi-
tion [16] in a low-dimensional parameter space, we consider
a complex network of Kuramoto oscillators

θ̇i = ωi −K ·
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} , [5]

where all coupling weights aij are either zero or one, and the
coupling gain K > 0 serves as control parameter. If L is the
corresponding unweighted Laplacian matrix, then condition
[16] reads as K > Kcritical , ‖L†ω‖E,∞. Of course, the con-
dition K > Kcritical is only sufficient and the critical coupling
may be smaller than Kcritical. In order to test the accuracy of
the condition K > Kcritical, we numerically found the smallest
value of K leading to synchrony with phase cohesiveness π/2.

Figure 3 reports our findings for various network sizes,
connected random graph models, and sample distributions of
the natural frequencies. We refer to the SI for the detailed
simulation setup. First, notice from Subfigures (a),(b),(d),
and (e) that condition [16] is extremely accurate for a sparse
graph, that is, for small p and n, as expected from our ana-
lytical results. Second, for a dense graph with p ≈ 1, Subfig-
ures (a),(b),(d), and (e) confirm the results known for classic
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Kuramoto oscillators [21]: for a bipolar distribution condi-
tion [16] is exact, and for a uniform distribution a small
critical coupling is obtained. Third, Subfigures (c) and (d)
show that condition [16] is scale-free for a Watts-Strogatz
small world network, that is, it has almost constant accu-
racy for various values of n and p. Fourth and finally, ob-
serve that condition [16] is always within a constant factor of
the exact critical coupling, whereas other proposed conditions
[34, 30, 25, 35, 33, 23, 24] on the nodal degree or on the alge-
braic connectivity scale poorly with respect to network size n.
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Fig. 3. Numerical evaluation of the exact critical coupling K in a complex Ku-

ramoto oscillator network. The subfigures show K normalized by ‖L†ω‖E,∞ for an

Erdös-Rényi graph with probability p of connecting two nodes, for a random geometric

graph with connectivity radius p, and for a Watts-Strogatz small world network with

rewiring probability p. Each data point is the mean over 100 samples of the respective

random graph model, for values of ωi sampled from a bipolar or a uniform distribution

supported on [−1, 1], and for the network sizes n ∈ {10, 20, 40, 80, 160}.

Applications in Power Networks
We envision that condition [17] can be applied to quickly
assess synchronization and robustness in power networks un-
der volatile operating conditions. Since real-world power net-
works are carefully engineered systems with particular net-
work topologies and parameters, we do not extrapolate the
statistical results from the previous section to power grids.
Rather, we consider ten widely-established IEEE power net-
work test cases provided by [42, 43].

Under nominal operating conditions, the power generation
is optimized to meet the forecast demand, while obeying the
AC power flow laws and respecting the thermal limits of each
transmission line. Thermal limits constraints are precisely
equivalent to phase cohesiveness requirements. In order to
test the synchronization condition [17] in a volatile smart grid
scenario, we make the following changes to the nominal net-
work: 1) We assume fluctuating demand and randomize 50%
of all loads to deviate from the forecasted loads. 2) We assume
that the grid is penetrated by renewables with severely fluc-

tuating power outputs, for example, wind or solar farms, and
we randomize 33% of all generating units to deviate from the
nominally scheduled generation. 3) Following the paradigm
of smart operation of smart grids [44], the fluctuations can be
mitigated by fast-ramping generation, such as fast-response
energy storage including batteries and flywheels, and control-
lable loads, such as large-scale server farms or fleets of plug-in
hybrid electrical vehicles. Here, we assume that the grid is
equipped with 10% fast-ramping generation and 10% control-
lable loads, and the power imbalance (caused by fluctuating
demand and generation) is uniformly dispatched among these
adjustable power sources. For each of the ten IEEE test cases,
we construct 1000 random realizations of the scenario 1), 2),
and 3) described above, we numerically check for the existence
of a synchronous solution, and we compare the numerical so-
lution with the results predicted by our condition [17]. Our
findings are reported in Table 1, and a detailed description of
the simulation setup can be found in the SI.

It can be observed that condition [17] predicts the cor-
rect phase cohesiveness |θi − θj | along all transmission lines
{i, j} ∈ E with extremely high accuracy even for large-scale
networks featuring 2383 nodes. These conclusions can also
be extended to power network models with variable parame-
ters which account for uncertainty in demand or unmodeled
voltage dynamics. We refer to the SI for further details.
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Fig. 4. Illustration of contingencies the RTS 96 power network. Here, square

nodes are generators and round nodes are loads, large amounts of power are exported

from the Northwestern area to the Southeastern area, and generator 323 is tripped.

As a final test, we validate the synchronization condition
[17] in a stressed power grid case study. We consider the
IEEE Reliability Test System 96 (RTS 96) [43] illustrated in
Figure 4. We assume the following two contingencies have
taken place and we characterize the remaining safety mar-
gin. First, we assume generator 323 is disconnected, possibly
due to maintenance or failure events. Second, we consider
the following imbalanced power dispatch situation: the power
demand at each load in the Southeastern area deviates from
the nominally forecasted demand by a uniform and positive
amount, and the resulting power deficiency is compensated
by uniformly increasing the generation in the Northwestern
area. This imbalance can arise, for example, due to a short-
fall in predicted load and renewable energy generation. Cor-
respondingly, power is exported from the Northwestern to the
Southeastern area via the transmission lines {121, 325} and
{223, 318}. At a nominal operating condition, the RTS 96
power network is sufficiently robust to tolerate each single
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one of these two contingencies, but the safety margin is now
minimal. When both contingencies are combined, then our
synchronization condition [17] predicts that the thermal limit
of the transmission line {121, 325} is reached at an additional
loading of 22.20%. Indeed, the dynamic simulation scenario
shown in Figure 5 validates the accuracy of this prediction. It
can be observed, that synchronization is lost for an additional
loading of 22.33%, and the areas separate via the transmission
line {121, 325}. This separation triggers a cascade of events,
such as the outage of the transmission line {223, 318}, and the
power network is en route to a blackout. We remark that, if
generator 323 is not disconnected and there are no thermal
limit constraints, then, by increasing the loading, we observe
the classic loss of synchrony through a saddle-node bifurca-
tion. Also this bifurcation can be predicted accurately by our
results, see the SI for a detailed description.
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Fig. 5. The RTS 96 dynamics for a continuous load increase from 22.19% to

22.24%. Subfigure (a) shows the angles θ(t) which loose synchrony at t∗ =
18.94 s, when the thermal limit γ∗ = 0.1977 rad of the transmission line

{121, 325} is reached. Subfigure (b) shows the angles θ(t) at t = t∗. Sub-

figure (c) depicts the angular distances and the thermal limits γ∗ and γ∗∗, where

the lines {121, 325} and {223, 318} are plotted as dashed curves. Subfigures (d)

and (e) show the generator phase space
(
θ(t), θ̇(t)

)
before and after t∗, where the

loss of a common synchronization frequency can be observed.

In summary, the results in this section confirm the valid-
ity, the applicability, and the accuracy of the synchronization
condition [17] in complex power network scenarios.

Discussion and Conclusions
In this article we studied the synchronization phenomenon
for broad class of coupled oscillator models proposed in the
scientific literature. We proposed a surprisingly simple condi-
tion that accurately predicts synchronization as a function of
the parameters and the topology of the underlying network.

Our result, with its physical and graph theoretical interpre-
tations, significantly improves upon the existing test in the
literature on synchronization. The correctness of our syn-
chronization condition is established analytically for various
interesting network topologies and via Monte Carlo simula-
tions for a broad range of generic networks. We validated our
theoretical results for complex Kuramoto oscillator networks
as well as in smart grid applications.

Our results pose as many questions as they answer.
Among the important theoretical problems to be addressed
is a characterization of the set of all network topologies and
parameters for which our proposed synchronization condition
‖L†ω‖E,∞ < 1 is not sufficiently tight. We conjecture that
this set is “thin” in an appropriate parameter space. Our
results suggest that an exact condition for synchronization
of any arbitrary network is of the form ‖L†ω‖E,∞ < c, and
we conjecture that the constant c is always strictly positive,
upper-bounded, and close to one. Yet another important ques-
tion not addressed in the present article concerns the region
of attraction of a synchronized solution. We conjecture that
the latter depends on the gap in the presented condition.

On the application side, the results contained in this paper
need to be extended to more detailed power network models
including voltage dynamics, reactive power flows, and higher-
order generator dynamics. We envision that our synchroniza-
tion conditions enable emerging smart grid applications, such
as power flow optimization subject to stability constraints,
distance to failure metric, and the design of control strategies
to avoid cascading failures.

Table 1. Evaluation of condition [17] for ten IEEE
test cases under volatile operating conditions.

Randomized test case: ∗Correctness: †Accuracy: ‡Cohesive:

(1000 instances): [rad] [rad]

Chow 9 bus system always true 4.1218 · 10−5 0.12889
IEEE 14 bus system always true 2.7995 · 10−4 0.16622
IEEE RTS 24 always true 1.7089 · 10−3 0.22309
IEEE 30 bus system always true 2.6140 · 10−4 0.16430
New England 39 always true 6.6355 · 10−5 0.16821
IEEE 57 bus system always true 2.0630 · 10−2 0.20295
IEEE RTS 96 always true 2.6076 · 10−3 0.24593
IEEE 118 bus system always true 5.9959 · 10−4 0.23524
IEEE 300 bus system always true 5.2618 · 10−4 0.43204
Polish 2383 bus always true 4.2183 · 10−3 0.25144
system (winter 99)

∗Correctness: ‖L†ω‖E,∞≤sin(γ) =⇒ max{i,j}∈E |θ∗i − θ∗j | ≤ γ
†Accuracy:

∣∣max{i,j}∈E |θ∗i − θ∗j | − arcsin(‖L†ω‖E,∞)
∣∣

‡Phase cohesiveness: max{i,j}∈E |θ∗i − θ∗j |

¶The accuracy and phase cohesiveness results are averaged over
1000 instances of randomized load and generation.
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Supplementary Information

Introduction
This supplementary information is organized as follows.

The section Mathematical Models and Synchronization
Notions provides a description of the considered coupled os-
cillator model including a detailed modeling of a mechanical
analog and a few power network models. Furthermore, we
state our definition of synchronization and compare various
synchronization conditions proposed for oscillator networks.

The section Mathematical Analysis of Synchronization
provides a rigorous mathematical analysis of synchronization,
which leads to the novel synchronization conditions proposed
in the main article. Throughout our analysis we provide vari-
ous examples illustrating certain theoretical concepts and re-
sults, and we also compare our results to existing results in
the synchronization and power networks literature.

The section Robust Synchronization in Presence of Uncer-
tainty extends our synchronization condition to the case when
the network parameters can vary within prescribed upper and
lower bounds. This parameter-varying approach can account
for modeling uncertainties or unmodeled dynamics.

The section Statistical Synchronization Assessment pro-
vides a detailed account of our Monte Carlo simulation studies
and the complex Kuramoto network studies. Throughout this
section, we also recall the basics of probability estimation by
Monte Carlo methods that allow us to establish a statistical
synchronization result in a mathematically rigorous way.

Finally, the section Synchronization Assessment for Power
Networks describes the detailed simulation setup for the ran-
domized IEEE test systems, it provides the simulation data
used for the dynamic RTS 96 power network simulations, it il-
lustrates a dynamic bifurcation scenario in the RTS 96 power
network, and it describes extensions of the results in the main
paper to variable load demands and load voltages.

The remainder of this section introduces some notation
and recalls some preliminaries.

Preliminaries and Notation.Vectors and functions: Let 1n
and 0n be the n-dimensional vector of unit and zero en-
tries, and let 1⊥n be the orthogonal complement of 1n in
Rn, that is, 1⊥n , {x ∈ Rn : x ⊥ 1n}. Let eni be ith
canonical basis vector of Rn, that is, the ith entry of eni is
1 and all other entries are zero. Let 1n×n = 1n · 1Tn be the
(n× n)-matrix of unit entries. Given an n-tuple (x1, . . . , xn),
let x ∈ Rn be the associated vector. For an ordered in-
dex set I of cardinality |I| and an one-dimensional array

{xi}i∈I , we define diag({xi}i∈I) ∈ R|I|×|I| to be the asso-
ciated diagonal matrix. For x ∈ Rn, define the vector-valued
functions sin(x) = (sin(x1), . . . , sin(xn)) and arcsin(x) =
(arcsin(x1), . . . , arcsin(xn)), where the arcsin function is de-
fined for the branch [−π/2, π/2]. For a set X ⊂ Rn and a
matrix A ∈ Rm×n, let AX = {y ∈ Rm : y = Ax , x ∈ X}.

Geometry on n-torus: The set S1 denotes the unit circle,
an angle is a point θ ∈ S1, and an arc is a connected subset
of S1. The geodesic distance between two angles θ1, θ2 ∈ S1

is the minimum of the counter-clockwise and the clockwise
arc length connecting θ1 and θ2. With slight abuse of nota-
tion, let |θ1 − θ2| denote the geodesic distance between two
angles θ1, θ2 ∈ S1. Finally, the n-torus is the product set
Tn = S1 × · · · × S1 is the direct sum of n unit circles.

Algebraic graph theory: Given an undirected, connected,
and weighted graph G(V, E , A) induced by the symmet-
ric, irreducible, and nonnegative adjacency matrix A ∈

Rn×n, the Laplacian matrix L ∈ Rn×n is defined by L =
diag({

∑n
j=1 aij}

n
i=1) − A. If a number ` ∈ {1, . . . , |E|} and

an arbitrary direction is assigned to each edge {i, j} ∈ E , the

(oriented) incidence matrix B ∈ Rn×|E| is defined component-
wise as Bk` = 1 if node k is the sink node of edge ` and as
Bk` = −1 if node k is the source node of edge `; all other
elements are zero. For x ∈ Rn, the vector BTx has com-
ponents xi − xj for any oriented edge from j to i, that is,
BT maps node variables xi, xj to incremental edge variables
xi−xj . If diag({aij}{i,j}∈E) is the diagonal matrix of nonzero

edge weights, then L = B diag({aij}{i,j}∈E)BT . For a vector

x ∈ Rn, the incremental norm ‖x‖E,∞ , max{i,j}∈E |xi − xj |
used in the main article can be expressed via the incidence ma-
trix B as ‖x‖E,∞ = ‖BTx‖∞. If the graph is connected, then
Ker (BT ) = Ker (L) = span(1n), all n− 1 remaining eigenval-
ues of L are real and strictly positive, and the second-smallest
eigenvalue λ2(L) is called the algebraic connectivity. The or-
thogonal vector spaces Ker (B) and Ker (B)⊥ = Im (BT ) are
spanned by vectors associated to cycles and cut-sets in the
graph , see for example [1, Section 4] or [2]. In the following,
we refer to Ker (B) and Im (BT ) as the cycle space and the
cut-set space, respectively.

Laplacian inverses: Since the Laplacian matrix L is sin-
gular, we will frequently use its Moore-Penrose pseudo in-
verse L†. If U ∈ Rn×n is an orthonormal matrix of eigen-
vectors of L, the singular value decomposition of L is L =
U diag({0, λ2, . . . , λn})UT , and its Moore-Penrose pseudo in-
verse L† is given by L† = U diag({0, 1/λ2, . . . , 1/λn})UT . We
will frequently use the identity L ·L† = L† ·L = In − 1

n
1n×n,

which follows directly from the singular value decomposition.
We also define the effective resistance between nodes i and j
by Rij = L†ii + L†jj − 2L†ij . We refer to [3] for further infor-
mation on Laplacian inverses and on the resistance distance.

Mathematical Models and Synchronization Notions
In this section we introduce the mathematical model of cou-
pled phase oscillators considered in this article, we present
some synchronization notions, and give a detailed account of
the literature on synchronization of coupled phase oscillators.

General Coupled Oscillator Model. Consider a weighted, undi-
rected, and connected graph G(V, E , A) with n nodes V =
{1, . . . , n}, partitioned node set V = V1 ∪ V2 and edge set E
induced by the adjacency matrix A ∈ Rn×n. We assume that
the graph G has no self-loops {i, i}, that is, aii = 0 for all
i ∈ V. Associated to this graph, consider the following model
of |V1| ≥ 0 second-order Newtonian and |V2| ≥ 0 first-order
kinematic phase oscillators

Miθ̈i +Diθ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ V1,

Diθ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ V2,

[1]

where θi ∈ S1 and θ̇i ∈ R1 are the phase and frequency of os-
cillator i ∈ V, ωi ∈ R1 and Di > 0 are the natural frequency
and damping coefficient of oscillator i ∈ V, and Mi > 0 is iner-
tial constant of oscillator i ∈ V1. The coupled oscillator model
[1] evolves on Tn ×R|V1|, and features an important symme-
try, namely the rotational invariance of the angular variable θ.
The interesting dynamics of the coupled oscillator model [1]
arises from a competition between each oscillator’s tendency
to align with its natural frequency ωi and the synchronization-
enforcing coupling aij sin(θi − θj) with its neighbors.

As discussed in the main article, the coupled oscillator
model [1] unifies various models proposed in the literature.
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For example, for the parameters V1 = ∅ and Di = 1 for all
i ∈ V2, it reduces to the celebrated Kuramoto model [4, 5]

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} . [2]

We refer to the review articles [6, 7, 8, 9, 10] for various the-
oretic results on the Kuramoto model [2] and further syn-
chronization applications in natural sciences, technology, and
social networks. Here, we present a detailed modeling of the
spring oscillator network used as a mechanical analog in the
main article, and we present a few power network models,
which can be described by the coupled oscillator model [1].

Mechanical Spring Network. Consider the spring network il-
lustrated in Figure 6 consisting of a group of n particles con-
strained to rotate around a circle with unit radius. For sim-
plicity, we assume that the particles are allowed to move freely
on the circle and exchange their order without collisions.

Each particle is characterized by its phase angle θi ∈ S1

and frequency θ̇i ∈ R, and its inertial and damping coefficients
are Mi > 0 and Di > 0. The external forces and torques
acting on each particle are (i) a viscous damping force Diθ̇i
opposing the direction of motion, (ii) a non-conservative force
ωi ∈ R along the direction of motion depicting a preferred
natural rotation frequency, and (iii) an elastic restoring torque
between interacting particles i and j coupled by an ideal elas-
tic spring with stiffness aij > 0 and zero rest length. The
topology of the spring network is described by the weighted,
undirected, and connected graph G = (V, E , A).

To compute the elastic torque between the particles, we
parametrize the position of each particle i by the unit vector
pi = [cos(θi) , sin(θi)]

T ∈ S1 ⊂ R2. The elastic Hookean en-
ergy stored in the springs is the function E : Tn → R given
up to an additive constant by

E(θ) =
∑
{i,j}∈E

aij
2
‖pi − pj‖22

=
∑
{i,j}∈E

aij
(
1− cos(θi) cos(θj)− sin(θi) sin(θj)

)
=
∑
{i,j}∈E

aij
(
1− cos(θi − θj)

)
,

where we employed the trigonometric identity cos(α − β) =
cosα cosβ + sinα sinβ in the last equality. Hence, we obtain
the restoring torque acting on particle i as

Ti(θ) = − ∂

∂θi
E(θ) = −

∑n

j=1
aij sin(θi − θj) .

Therefore, the network of spring-interconnected particles de-
picted in Figure 6 obeys the dynamics

Miθ̈i+Diθ̇i = ωi−
∑n

j=1
aij sin(θi−θj) , i ∈ {1, . . . , n}. [3]

In conclusion, the spring network in Figure 6 is a mechanical
analog of the coupled oscillator model [1] with V2 = ∅.

x

x

x

ω1

ω3ω2

a12

a13

a23

Fig. 6. Mechanical analog of the coupled oscillator model [1 ].

Power Network Model. The coupled oscillator model [1] in-
cludes also a variety of power network models. We briefly
present different power network models compatible with the
coupled oscillator model [1] and refer to [11, Chapter 7] for a
detailed derivation from a higher order first principle model.

Consider a connected power network with generators V1

and load buses V2. The network is described by the symmet-
ric nodal admittance matrix Y ∈ Cn×n (augmented with the
generator transient reactances). If the network is lossless and
the voltage levels |Vi| at all nodes i ∈ V1 ∪ V2 are constant,
then the maximum real power transfer between any two nodes
i, j ∈ V1 ∪ V2 is aij = |Vi| · |Vj | · =(Yij), where =(Yij) denotes
the susceptance of the transmission line {i, j} ∈ E . With this
notation the swing dynamics of generator i are given by

Miθ̈i +Diθ̇i=Pm,i −
∑n

j=1
aij sin(θi − θj) , i ∈ V1, [4]

where θi ∈ S1 and θ̇i ∈ R1 are the generator rotor angle and
frequency, θj ∈ S1 for j ∈ V2 are the voltage phase angles at
the load buses, and Pm,i > 0, Mi > 0, and Di > 0 are the
mechanical power input from the prime mover, the generator
inertia constant, and the damping coefficient.

For the load buses V2, we consider the following three load
models illustrated in Figure 7.

1) PV buses with frequency-dependent loads: All load
buses are PV buses, that is, the active power demand Pl,i and
the voltage magnitude |Vi| are specified for each bus. The real
power drawn by load i consists of a constant term Pl,i > 0 and

a frequency dependent term Diθ̇i with Di > 0, as illustrated
in Figure 7(a). The resulting real power balance equation is

Diθ̇i + Pl,i = −
∑n

j=1
aij sin(θi − θj) , i ∈ V2 . [5]

The dynamics [4]-[5] are known as structure-preserving
power network model [12], and equal the coupled oscillator
model [1] for ωi = Pm,i, i ∈ V1, and ωi = −Pl,i, i ∈ V2.

2) PV buses with constant power loads: All load buses
are PV buses, each load features a constant real power de-
mand Pl,i > 0, and the load damping in [5] is neglected,
that is, Di = 0 in equation [5]. The corresponding circuit-
theoretic model is shown in Figure 7(b). If the angular dis-
tances |θi(t)− θj(t)| < π/2 are bounded for each transmission
line {i, j} ∈ E (this condition will be precisely established in
the next section), then the resulting differential-algebraic sys-
tem has the same local stability properties as the dynamics
[4]-[5], see [13]. Hence, all of our results apply locally also
to the structure-preserving power network model [4]-[5] with
zero load damping Di = 0 for i ∈ V2.

3) Constant current and constant admittance loads: If
each load i ∈ V2 is modeled as a constant current demand
Ii and an (inductive) admittance Yi,shunt to ground as illus-
trated in Figure 7(c), then the linear current-balance equa-
tions are I = Y V , where I ∈ Cn and V ∈ Cn are the vectors
of nodal current injections and voltages. After elimination of
the bus variables Vi, i ∈ V2, through Kron reduction [3], the
resulting dynamics assume the form [3] known as the (loss-
less) network-reduced power system model [14, 15]. We refer to
[11, 3] for a detailed derivation of the network-reduced model.
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Fig. 7. Equivalent circuits of the frequency-dependent load model (a), the constant

power load model (b), and the constant current and admittance load model (c).

The above model [4]-[5] is valid for an AC grid with syn-
chronous generator and load models 1), 2), and 3). We remark
that synchronous motor loads also assume the form [4] with
Pm,i < 0 [16], and a first-principle modeling of a DC power
source connected to an AC grid via a droop-controlled inverter
results also in equation [5]; see [17] for further details.

Remark 1. (Voltage dynamics) To conclude this modeling para-
graph, we want to state a word of caution regarding the load
models. The PV load models 1) and 2) assume constant volt-
age magnitudes |Vi| at the loads. Under normal operating
conditions, the assumption of constant voltage magnitudes
is well justified since voltage magnitudes are controlled at
the generators, and the active power flow aij sin(θi − θj) =
|Vi| · |Vj | · =(Yij) · sin(θi− θj) between two nodes i, j ∈ V1 ∪V2

is primarily governed by the angular difference θi−θj and not
by the voltage magnitudes |Vi|, |Vj |. The latter assumption
is known as “decoupling assumption” in the power systems
community. Whereas the model [4]-[5] is well-adopted for
power systems stability studies, the assumption of constant
load voltage magnitudes ceases to hold in a heavily stressed
grid (near a bifurcation point), where additional dynamic phe-
nomena can occur such as voltage collapse at the loads [18].
In short, the coupling weights aij are not necessarily constant.

Likewise, if the shunt admittance loads in the load model
model 3) are not constant (e.g., constant power loads can be
transformed to voltage-dependent shunt admittances), then
the Kron reduction process may be ill-posed, or the admit-
tance matrix of the network-reduced model depends on the
load voltages. In the latter case, the coupling weights aij are
again not constant but depend on the load voltages.

To explicitly account for such unmodeled voltage dynam-
ics affecting the coupling weights aij , we study the coupled
oscillator model [1] with interval-valued parameters in the
section Robust Synchronization in Presence of Uncertainty.�

Synchronization Notions. The following subsets of the n-torus
Tn are essential for the synchronization problem: For γ ∈
[0, π/2[, let ∆̄G(γ) ⊂ Tn be the closed set of angle arrays
(θ1, . . . , θn) with the property |θi − θj | ≤ γ for {i, j} ∈ E .
Also, let ∆G(γ) be the interior of ∆̄G(γ).

Def inition 1. A solution (θ, θ̇) : R≥0 → (Tn,R|V1|) to the
coupled oscillator model [1] is said to be synchronized if
θ(0) ∈ ∆̄G(γ) and there exists ωsync ∈ R1 such that θ(t) =

θ(0) + ωsync1nt (mod 2π) and θ̇(t) = ωsync1|V1| for all t ≥ 0.

In other words, here, synchronized trajectories have the prop-
erties of frequency synchronization and phase cohesiveness,
that is, all oscillators rotate with the same synchronization
frequency ωsync and all their phases belong to the set ∆̄G(γ).
For a power network model [4]-[5], the notion of phase co-
hesiveness is equivalent to bounded flows |aij sin(θi − θj)| ≤
aij sin(γ) for all transmission lines {i, j} ∈ E .

For the coupled oscillator model [1], the explicit synchro-

nization frequency is given by ωsync ,
∑n
i=1 ωi/

∑n
i=1 Di,

see [9] for a detailed derivation. By transforming to a ro-

tating frame with frequency ωsync and by replacing ωi by
ωi − Diωsync, we obtain ωsync = 0 (or equivalently ω ∈ 1⊥n )
corresponding to balanced power injections

∑
i∈V1 Pm,i =∑

i∈V2 Pl,i in power network applications. Hence, without loss

of generality, we assume that ω ∈ 1⊥n such that ωsync = 0.
Given a point r ∈ S1 and an angle s ∈ [0, 2π], let

rots(r) ∈ S1 be the rotation of r counterclockwise by the angle
s. For (r1, . . . , rn) ∈ Tn, define the equivalence class

[(r1, . . . , rn)] = {(rots(r1), . . . , rots(rn)) ∈ Tn | s ∈ [0, 2π]}.
Clearly, if (r1, . . . , rn) ∈ ∆̄G(γ), then [(r1, . . . , rn)] ⊂ ∆̄G(γ).
Def inition 2. Given θ ∈ ∆̄G(γ) for some γ ∈ [0, π/2[, the set

([θ],0|V1|) ⊂ Tn × R|V1| is a synchronization manifold of the
coupled oscillator model [1].
Note that a synchronized solution takes value in a synchro-
nization manifold due to rotational symmetry. For two first-
order oscillators [2] the state space T2, the set ∆G(π/2), as
well as the synchronization manifold [θ∗] associated to an an-
gle array θ∗ = (θ∗1 , θ

∗
2) ∈ T2 are illustrated in Figure 8.

∆G(π/2)

[θ∗]

12

θ∗

Fig. 8. Illustration of the state space T2, the set ∆G(π/2), the synchronization

manifold [θ∗] associated to a point θ∗ = (θ∗1 , θ
∗
2) ∈ ∆G(π/2), the tangent

space at θ∗, and the translation vector12.

Existing Synchronization Conditions.The coupled oscillator
dynamics [1], and the Kuramoto dynamics [2] for that mat-
ter, feature (i) the synchronizing effect of the coupling de-
scribed by the weighted edges of the graph G(V, E , A) and (ii)
the de-synchronizing effect of the dissimilar natural frequen-
cies ω ∈ 1⊥n at the nodes. Loosely speaking, synchronization
occurs when the coupling dominates the dissimilarity. Various
conditions are proposed in the power systems and synchro-
nization literature to quantify this tradeoff between coupling
and dissimilarity. The coupling is typically quantified by the
algebraic connectivity λ2(L) [19, 15, 20, 21, 22, 23] or the

weighted nodal degree degi ,
∑n
j=1 aij [24, 3, 25, 15, 26],

and the dissimilarity is quantified by either absolute norms
‖ω‖p or incremental (relative) norms ‖BTω‖p, where typi-
cally p ∈ {2,∞}. Sometimes, these conditions can be evalu-
ated only numerically since they are state-dependent [19, 24]
or arise from a non-trivial linearization process, such as the
Master stability function formalism [22, 23, 27]. In general,
concise and accurate results are only known for specific topolo-
gies such as complete graphs [9, 28] linear chains [29, 30] and
complete bipartite graphs [31] with uniform weights.

For arbitrary coupling topologies only sufficient condi-
tions are known [19, 15, 20, 24] as well as numerical inves-
tigations for random networks [32, 21, 33, 34]. To best of
our knowledge, the sharpest and provably correct synchro-
nization conditions for arbitrary topologies assume the form

λ2(L) >
(∑

{i,j}∈E |ωi − ωj |
2
)1/2

, see [10, Theorem 4.7].

For arbitrary undirected, connected, and weighted, graphs
G(V, E , A), simulation studies indicate that the known suffi-
cient conditions [19, 15, 20, 24] are conservative estimates on
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Fig. 9. The left plot shows the phase space dynamics of a network of n = 4
second-order oscillators [3 ] with V2 = ∅ and Kuramoto-type coupling aij = K/n
for all distinct i, j ∈ V1 = {1, . . . , 4} and for K ∈ R. The right plot

shows the phase space dynamics corresponding to first-order Kuramoto oscillators

[2 ] together with the frequency dynamics d
d t
θ̇ = −M−1Dθ̇. The natural fre-

quencies ωi and the coupling strength K are chosen such that ωsync = 0 and

K = 1.1 ·maxi,j∈{1,...,4} |ωi−ωj |. From the same initial configuration θ(0)
(denoted by �) both first and second-order oscillators converge exponentially to the

same synchronized equilibria (denoted by •), as predicted by Lemma 1.

the threshold from incoherence to synchrony, and every review
article on synchronization concludes with the open problem of
finding sharp synchronization conditions [7, 9, 6, 22, 23, 35].

Mathematical Analysis of Synchronization
This section presents our analysis of the synchronization prob-
lem in the coupled oscillator model [1].

An Algebraic Approach to Synchronization. Here we present
a novel analysis approach that reduces the synchronization
problem to an equivalent algebraic problem that reveals the
crucial role of cycles and cut-sets in the graph topology. In
a first analysis step, we reduce the synchronization problem
for the coupled oscillator model [1] to a simpler problem,
namely stability of a first-order model. It turns out that exis-
tence and local exponential stability of synchronized solutions
of the coupled oscillator model [1] can be entirely described
by means of the first-order Kuramoto model [2].

Lemma 1. (Synchronization equivalence) Consider the
coupled oscillator model [1] and the Kuramoto model [2].
The following statements are equivalent for any γ ∈ [0, π/2[

and any synchronization manifold ([θ],0|V1|) ⊂ ∆̄G(γ)×R|V1|.

(i) [θ] is a locally exponentially stable synchronization mani-
fold of the Kuramoto model [2]; and

(ii) ([θ],0|V1|) is a locally exponentially stable synchronization
manifold of the coupled oscillator model [1].

If the equivalent statements (i) and (ii) are true, then, locally
near their respective synchronization manifolds, the coupled
oscillator model [1] and the Kuramoto model [2] together

with the frequency dynamics d
d t
θ̇ = −M−1Dθ̇ are topologi-

cally conjugate.

Loosely speaking, the topological conjugacy result means
that the trajectories of the two plots in Figure 4 can be con-
tinuously deformed to match each other while preserving pa-
rameterization of time. Lemma 1 is illustrated in Figure 4,
and its proof can be found in [9, Theorems 5.1 and 5.3].

By Lemma 1, the local synchronization problem for the
coupled oscillator model [1] reduces to the synchronization
problem for the first-order Kuramoto model [2]. Hence-
forth, we restrict ourselves to the Kuramoto model [2]. The
following result is known in the synchronization literature
[20, 15] as well as in power systems, where the saturation

of a transmission line is corresponds to a singularity of the
load flow Jacobian resulting in a saddle node bifurcation
[36, 37, 13, 12, 38, 39, 24, 19, 40, 41, 18, 42].

Lemma 2. (Stable synchronization in ∆G(π/2)) Consider
the Kuramoto model [2] with a connected graph G(V, E , A),
and let γ ∈ [0, π/2[. The following statements hold:

1) Jacobian: The Jacobian of the Kuramoto model evaluated
at θ ∈ Tn is given by

J(θ) = −B diag({aij cos(θi − θj)}{i,j}∈E)BT ;

2) Stability: If there exists an equilibrium point θ∗ ∈ ∆̄G(γ),
then it belongs to a locally exponentially stable equilibrium
manifold [θ∗] ∈ ∆̄G(γ); and

3) Uniqueness: This equilibrium manifold is unique in
∆̄G(γ).

Proof Since we have that ∂
∂θi

(
ωi −

∑n
k=1 aik sin(θi −

θk)
)

= −
∑n
k=1 aik cos(θi−θk) and ∂

∂θj

(
ωi−

∑n
k=1 aik sin(θi−

θk)
)

= aij cos(θi−θj), the negative Jacobian of the right-hand
side of the Kuramoto model [2] equals the Laplacian matrix of

the connected graph G(V, E , Ã) where ãij = aij cos(θi − θj).
Equivalently, in compact notation the Jacobian is given by
J(θ) = −B diag({aij cos(θi − θj)}{i,j}∈E)BT . This completes
the proof of statement 1).

The Jacobian J(θ) evaluated at an equilibrium point
θ∗ ∈ ∆̄G(γ) is negative semidefinite with rank n − 1. Its
nullspace is 1n and arises from the rotational symmetry of the
right-hand side of the Kuramoto model [2], see Figure 8 for an
illustration. Consequently, the equilibrium point θ∗ ∈ ∆̄G(γ)
is locally (transversally) exponentially stable. Moreover, the
corresponding equilibrium manifold [θ∗] ∈ ∆̄G(γ) is locally ex-
ponentially stable. This completes the proof of statement 2).

To prove statement 3), we denote the right-hand side of
[2] by f : Tn → Rn, where f is defined component-wise by

fi(θ) = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} .

In [39, Corollary 1], it is shown that f − ω is a one-to-one
function on ∆̄G(π/2) modulo rotational symmetry, that is, for
θ1 ∈ ∆̄G(π/2) and θ2 ∈ ∆̄G(π/2), we have that f(θ1) = f(θ2)
if and only if [θ1] = [θ2]. This proves uniqueness of the equi-
librium manifold in ∆̄G(γ), γ ∈ [0, π/2[.

By Lemma 2, the problem of finding a locally stable syn-
chronization manifold reduces to that of finding a fixed point
θ∗ ∈ ∆̄G(γ) for some γ ∈ [0, π/2[. The fixed-point equations
of the Kuramoto model [2] read as

ωi =
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} . [6]

In a compact notation the fixed-point equations [6] are

ω = B diag
(
{aij}{i,j}∈E

)
sin(BT θ) . [7]

The following conditions show that the natural frequencies
ω have to be absolutely and incrementally bounded and the
nodal degree has to be sufficiently large such that fixed points
of [6] exist.

Lemma 3. (Necessary synchronization conditions) Con-
sider the Kuramoto model [2] with graph G(V, E , A) and
ω ∈ 1⊥n . Let γ ∈ [0, π/2[, and define the weighted nodal degree

degi ,
∑n
j=1 aij for each node i ∈ {1, . . . , n}. The following

statements hold:

1) Absolute boundedness: If there exists a synchronized
solution θ ∈ ∆̄G(γ), then

degi sin(γ) ≥ |ωi| for all i ∈ {1, . . . , n} . [8]
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2) Incremental boundedness: If there exists a synchro-
nized solution θ ∈ ∆̄G(γ), then

(degi+degj) sin(γ) ≥ |ωi−ωj | for all {i, j} ∈ E . [9]

Proof The first condition arises since sin(θi − θj) ∈
[− sin(γ), sin(γ)] for θ ∈ ∆̄G(γ), and the fixed-point equation
[6] has no solution if condition [8] is not satisfied.

Alternatively, since ω ∈ 1⊥n , a multiplication of the fixed
point equation [7] by the vector (eni −enj ) ∈ 1⊥n , for {i, j} ∈ E ,
or equivalently a subtraction of the ith and jth fixed-point
equation [6], yields the following equation for all {i, j} ∈ E :

ωi − ωj =
∑n

k=1
(aik sin(θi − θk)− ajk sin(θj − θk)) . [10]

Again, equation [10] has no solution in ∆̄G(γ) if condition
[9] is not satisfied.

In the following we aim to find sufficient and sharp con-
ditions under which the fixed-point equations [7] admit a so-
lution θ∗ ∈ ∆̄G(γ). We resort to a rather straightforward
solution ansatz. By formally replacing each term sin(θi − θj)
in the fixed-point equations [7] by an auxiliary scalar variable
ψij , the fixed-point equation [7] is equivalently written as

ω = B diag
(
{aij}{i,j}∈E

)
ψ , [11]

ψ = sin(BT θ) , [12]

where ψ ∈ R|E| is a vector with elements ψij . We will refer
to equations [11] as the auxiliary-fixed point equation, and
characterize their properties in the following theorem.

Theorem 1. (Properties of the fixed point equations)
Consider the Kuramoto model [2] with graph G(V, E , A) and
ω ∈ 1⊥n , its fixed-point equations [7], and the auxiliary fixed-
point equations [11]. The following statements hold:

1) Exact solution: Every solution of the auxiliary fixed-
point equations [11] is of the form

ψ = BTL†ω + ψhom , [13]

where the homogeneous solution ψhom ∈ R|E| satisfies
diag

(
{aij}{i,j}∈E

)
ψhom ∈ Ker (B).

2) Exact synchronization condition: Let γ ∈ [0, π/2[.
The following three statements are equivalent:

(i) There exists a solution θ∗ ∈ ∆̄G(γ) to the fixed-point
equation [7];

(ii) There exists a solution θ ∈ ∆̄G(γ) to

BTL†ω + ψhom = sin(BT θ) . [14]

for some ψhom ∈ diag
(
{1/aij}{i,j}∈E

)
ker(B); and

(iii) There exists a solution ψ ∈ R|E| to the auxiliary fixed-
point equation [11] of the form [13] satisfying the
norm constraint ‖ψ‖∞ ≤ sin(γ) and the cycle constraint
arcsin(ψ) ∈ Im (BT ).

If the three equivalent statements (i), (ii), and (iii)
are true, then we have the identities BT θ∗ = BT θ =
arcsin(ψ). Additionally, [θ∗] ∈ ∆̄G(γ) is a locally expo-
nentially stable synchronization manifold.

Proof Statement 1): Every solution ψ ∈ R|E| to the
auxiliary fixed-point equations [11] is of the form ψ =
ψhom + ψpt, where ψhom is the homogeneous solution and
ψpt is a particular solution. The homogeneous solution
satisfies B diag

(
{aij}{i,j}∈E

)
ψhom = 0n. One can eas-

ily verify that ψpt = BTL†ω is a particular solution1,

sinceB diag({aij}{i,j}∈E)ψpt = B diag({aij}{i,j}∈E)BTL†ω =

LL†ω =
(
In − 1

n
1n×n

)
ω = ω.

Statement 2), equivalence
(
(i) ⇔ (ii)

)
: If there exists a

solution θ∗ of the fixed-point equations [7], then θ∗ can be
equivalently obtained from equation [12] together with the
solution [13] of the auxiliary equations [11]. These two equa-
tions directly give equation [14].

Equivalence
(
(ii)⇔ (iii)

)
: For θ∗ ∈ ∆̄G(γ), we have from

equation [14] that ‖ψ‖∞ ≤ sin(γ) and arcsin(ψ) = BT θ∗,
that is, arcsin(ψ) ∈ Im (BT ). Conversely, if the norm con-
straint ‖ψ‖∞ ≤ sin(γ) and the cycle constraint arcsin(ψ) ∈
Im (BT ) are met, then equation [14] is solvable in ∆̄G(γ),
that is, there is θ∗ ∈ ∆̄G(γ) such that arcsin(ψ) = BT θ∗.
The local exponential stability of the associated synchroniza-
tion manifold [θ∗] follows then directly from Lemma 2.

The particular solution BTL†ω to the auxiliary fixed-
point equations [11] lives in the cut-set space Ker (B)⊥ and
the homogenous solution ψhom lives in the weighted cycle
space ψhom ∈ diag

(
{1/aij}{i,j}∈E

)
Ker (B). As a conse-

quence, by statement (iii) of Theorem 1, for each cycle in the
graph, we obtain one degree of freedom in choosing the ho-
mogeneous solution ψhom as well as one nonlinear constraint
cT arcsin(ψ) = 0, where c ∈ ker(B) is a signed path vector
corresponding to the cycle.

Remark 2. (Comments on necessity) The cycle space
Ker (B) of the graph serves as a degree of freedom to find
a minimum ∞-norm solution ψ∗ to equations [11] via

minψ∈R|E| ‖ψ‖∞ subject to ω = B diag
(
{aij}{i,j}∈E

)
ψ.

[15]
By Theorem 1, such a minimum ∞-norm solution ψ∗ nec-
essarily satisfies ‖ψ∗‖∞ ≤ sin(γ) so that an equilibrium
θ∗ ∈ ∆̄G(γ) exists. Hence, the condition ‖ψ∗‖∞ ≤ sin(γ)
is an optimal necessary synchronization condition.

The optimization problem [15] – the minimum ∞-norm
solution to an under-determined and consistent system of lin-
ear equations – is well studied in the context of kinemati-
cally redundant manipulators. Its solution is known to be
non-unique and contained in a disconnected solution space
[43, 44]. Unfortunately, there is no “a priori” analytic formula
to construct a minimum ∞-norm solution, but the optimiza-
tion problem is computationally tractable via its dual problem
maxu∈Rn uTω subject to ‖diag

(
{aij}{i,j}∈E

)
BTu‖1 = 1. �

Synchronization Assessment for Specific Networks.In this
subsection we seek to establish that the condition∥∥∥BTL†ω∥∥∥

∞
=
∥∥∥L†ω∥∥∥

E,∞
< 1 [16]

is sufficient for the existence of locally exponentially stable
equilibria in ∆G(π/2). More general, for a given level of phase
cohesiveness γ ∈ [0, π/2[ we seek to establish that the condi-
tion ∥∥∥BTL†ω∥∥∥

∞
=
∥∥∥L†ω∥∥∥

E,∞
≤ sin(γ) [17]

is sufficient for the existence of locally exponentially stable
equilibria in ∆̄G(γ). Since the right-hand side of [17] is a

1Likewise, it can also be shown that (B diag({aij}{i,j}∈E ))†ω as well as

diag({aij}{i,j}∈E )−1B†ω are other possible particular solutions. All of

these solutions differ only by addition of a homogenous solution. Each one can
be interpreted as solution to a weighted least squares problem, see [43]. Fur-
ther solutions can also be constructed in a graph-theoretic way by a spanning-

tree decomposition, see [2]. Our specific choice ψpt = BTL†ω has the prop-

erty that ψpt ∈ Im (BT ) lives in the cut-set space, and it is the most useful
particular solution in order to proceed with our synchronization analysis.
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concave function of γ ∈ [0, π/2[ that achieves its supremum
value at γ∗ = π/2, it follows that condition [17] implies [16].

In the main article, we provide a detailed interpretation
of the synchronization conditions [16] and [17] from vari-
ous practical perspectives. Before continuing our theoretical
analysis, we provide two further abstract but insightful per-
spectives on the conditions [16] and [17].

Remark 3. (Interpretation of the sync condition)
Graph-theoretic interpretation: With regards to the exact and
state-dependent norm and cycle conditions in statement (iii)
of Theorem 1, the proposed condition [17] is simply a norm
constraint on the network parameters in cut-set space Im (BT )
of the graph topology, and cycle components are discarded.

Circuit-theoretic interpretation: In a circuit or power net-
work, the variable ω ∈ Rn corresponds to nodal power injec-
tions. Let x ∈ R|E| satisfy Bx = ω, then x corresponds to
equivalent power injections along lines {i, j} ∈ E .2 Condition
[16] can then be rewritten as

∥∥BTL†Bx∥∥∞ < 1. The ma-

trix BTL†B ∈ R|E|×|E| has elements (ein − ejn)TL†(ekn − e`n)
for {i, j}, {k, `} ∈ E , its diagonal elements are the effective
resistances Rij , and its off-diagonal elements are the network
distribution (sensitivity) factors [45, Appendix 11A]. Hence,
from a circuit-theoretic perspective condition [16] restricts
the pair-wise effective resistances and the routing of power
through the network similar to the resistive synchronization
conditions developed in [24, 3, 25] �

As it turns out, the exact state-dependent synchronization
conditions in Theorem 1 can be easily evaluated for the spars-
est (acyclic) and densest (homogeneous) topologies and for
“worst-case” (cut-set inducing) and “best” (identical) natural
frequencies. For all of these cases the scalar condition [17] is
sharp. To quantify a “sharp” condition in the following the-
orem, we distinguish between exact (necessary and sufficient)
conditions and tight conditions, which are sufficient in general
and become necessary over a set of parametric realizations.

Theorem 2. (Sync condition for extremal network
topologies and parameters) Consider the Kuramoto model
[2] with connected graph G(V, E , A) and ω ∈ 1⊥n . Consider
the inequality condition [17] for γ ∈ [0, π/2[.
The following statements hold:

(G1) Exact synchronization condition for acyclic graphs:
Assume that G(V, E , A) is acyclic. There exists a locally
exponentially stable equilibrium θ∗ ∈ ∆̄G(γ) if and only if
condition [17] holds. Moreover, in this case we have that
BT θ∗ = arcsin(BTL†ω) ∈ ∆̄G(γ);

(G2) Tight synchronization condition for homogeneous
graphs: Assume that G(V, E , A) is a homogeneous graph,
that is, there is K > 0 such that aij = K for all distinct
i, j ∈ {1, . . . , n}. Consider a compact interval Ω ⊂ R,
and let Ω = (Ω1, . . . ,Ωn) ⊂ Rn be the set of all vectors
with components Ωi ∈ Ω for all i ∈ {1, . . . , n}. For all
ω ∈ Ω there exists a locally exponentially stable equilibrium
θ∗ ∈ ∆̄G(γ) if and only if condition [17] holds;

(G3) Exact synchronization condition for cut-set induc-
ing natural frequencies: Let Ω1, Ω2 ∈ R, and let
Ω = (Ω1, . . . ,Ωn) ⊂ Rn be the set of bipolar vectors with
components Ωi ∈ {Ω1,Ω2} for i ∈ {1, . . . , n}. For all
ω ∈ LΩ there exists a locally exponentially stable equi-
librium θ∗ ∈ ∆̄G(γ) if and only if condition [17] holds.
Moreover, Ω induces a cut-set: if |Ω2 −Ω1| = sin(γ), then
for any particular Ω∗ ∈ Ω and ω = LΩ∗ we obtain the
equilibrium θ∗ ∈ ∆̄G(γ) satisfying BT θ∗ = arcsin(BTΩ∗),
that is, for all {i, j} ∈ E, |θ∗i − θ∗j | = 0 if Ω∗i = Ω∗j and
|θ∗i − θ∗j | = γ if Ω∗i 6= Ω∗j ; and

(G4) Asymptotic correctness: In the limit ‖BTL†ω‖∞ → 0,
that is, for identical natural frequencies and/or asymptot-
ically strong network coupling, there is a locally exponen-
tially stable equilibrium θ∗ satisfying

lim
‖BTL†ω‖∞→0

(BT θ∗)i
(arcsin(BTL†ω))i

= 1 , i ∈ {1, . . . , |E|} .

Proof Statement (G1): For an acyclic graph we have that
Ker (B) = ∅. According to Theorem 1, there exists an equilib-
rium θ∗ ∈ ∆̄G(γ) if and only if condition [17] is satisfied. In
this case, we obtain BT θ∗ = arcsin(BTL†ω). This completes
the proof of statement (G1).

Statement (G2): In the homogeneous case, we have that
L = K

(
nIn−1n×n

)
and L† = 1

Kn

(
In− 1

n
1n×n

)
, see [3, Lemma

3.13]. Thus, the inequality condition [17] can be equivalently
rewritten as sin(γ) ≥

∥∥BTL† · ω∥∥∞ = 1
Kn

∥∥BTω∥∥∞. Accord-

ing to [9, Theorem 4.1], the Kuramoto model [2] with ho-
mogenous coupling aij = K features an exponentially stable
equilibrium θ∗ ∈ ∆̄G(γ), γ ∈ [0, π/2[, for all ω ∈ Ω if and only
if the condition K >

∥∥BTω∥∥∞ /n is satisfied. This concludes

the proof of statement (G2).

Statement (G3): For notational convenience, let c ,
Ω1 − Ω2. Then, for any Ω∗ ∈ Ω and for ω = LΩ∗, we
have that BTL†ω = BTL†LΩ∗ = BTΩ∗ is a vector with
components {−c, 0,+c}. Now consider the solution ψ =
BTL†ω = BTΩ∗ to the auxiliary fixed point equations [11],
and notice that arcsin(ψ) = arcsin(BTΩ∗) has compo-
nents {− arcsin(c), 0,+ arcsin(c)}. In particular, we have that
arcsin(ψ) ∈ Im (BT ), and the exact synchronization condi-
tion from Theorem 1 is satisfied if and only if ‖ψ‖∞ = c ≤
sin(γ), which corresponds to condition [17]. The cut-set
property follows since BT θ∗ = arcsin(ψ) has components
{− arcsin(c), 0,+ arcsin(c)} = {−γ, 0,+γ}. This concludes
the proof of statement (G3).

Statement (G4): Since arcsin(x)/x = 1+x2/6+O(x)4, we
have that (arcsin(BTL†ω))i/(B

TL†ω)i = 1 + O((BTL†ω)2
i )

for each component i ∈ {1, . . . , |E|}. Thus, in the limit
BTL†ω → 0|E|, it follows that arcsin(BTL†ω) ∈ Im (BT ),

and the cycle constraint arcsin(ψ) = arcsin(BTL†ω +
ψhom) ∈ Im (BT ) is met with ψhom = 0|E|. For BTL†ω → 0|E|
the norm constraint ‖BTL†ω‖∞ ≤ sin(γ) is satisfied as well
with γ ↘ 0, and we obtain3 for each i ∈ {1, . . . , |E|} that

limBTL†ω→0|E|

(
BT θ∗

)
i
/
(
arcsin(BTL†ω)

)
i

= 1 .

This concludes the proof of statement (G4) and Theorem 2.

Theorem 1 shows that the solvability of the fixed-point
equations [7] is inherently related to the cycle constraints.
The following lemma establishes feasibility of a single cycle.
Lemma 4. (Single cycle feasibility) Consider the Kuramoto
model [2] with a cycle graph G(V, E , A) and ω ∈ 1⊥n . With-
out loss of generality, assume that the edges are labeled by
{i, i+ 1} (mod n) for i ∈ {1, . . . , n} and Ker (B) = span(1n).

Define x ∈ 1⊥n and y ∈ Rn>0 uniquely by x , BTL†ω and

yi , ai,(i+1) (mod n) > 0 for i ∈ {1, . . . , n}. Let γ ∈ [0, π/2[.
The following statements are equivalent:

(i) There exists a locally exponentially stable equilibrium θ∗ ∈
∆̄G(γ); and

2Notice that x is not uniquely determined if the circuit features loops.
3The limit ‖BTL†ω‖∞ → 0 implies that the resulting equilibrium θ∗ ∈
∆̄G(0) corresponds to phase synchronization θi = θj for all i, j ∈ {1, . . . , n}.
The converse statement θ∗ ∈ ∆̄G(0) =⇒ ω = 0n is also true and its proof
can be found in [9, Theorem 5.5].
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(ii) The function f : [λmin, λmax]→ R with domain boundaries

λmin = max
i∈{1,...,n}

− sin(γ)−xi
yi

and λmax = min
i∈{1,...,n}

sin(γ)−xi
yi

and defined by f(λ) =
∑n
i=1 arcsin(xi + λyi) satisfies

f(λmin) < 0 < f(λmax).

If both equivalent statements 1) and 2) are true, then BT θ∗=
arcsin(x+ λ∗y), where λ∗ ∈ [λmin, λmax] satisfies f(λ∗)=0.

Proof According to Theorem 1, there exists a locally ex-
ponentially stable equilibrium θ∗ ∈ ∆̄G(γ) if and only if there
exists a solution ψ = x+λy, λ ∈ R, to the auxiliary fixed-point
equations [11] satisfying the norm constraint ‖ψ‖∞ ≤ sin(γ)
and the cycle constraint arcsin(ψ) ∈ Im (BT ).

Equivalently, since Ker (B) = span(1n), there is λ ∈ R
satisfying the norm constraint ‖x + λy‖∞ ≤ sin(γ) < 1
and the cycle constraint 1Tn arcsin(x + yλ) = 0. Equiv-
alently, the function f(λ) = 1Tn arcsin(x + yλ) features a
zero λ∗ ∈ [λmin, λmax] (corresponding to the cycle constraint),
where the constraints on λmin and λmax guarantee the norm
constraints xi + yiλmax ≤ sin(γ) and xi + yiλmin ≥ − sin(γ)
for all i ∈ {1, . . . , n}. Equivalently, by the intermediate value
theorem and due to continuity and (strict) monotonicity of
the function f , we have that f(λmin) < 0 < f(λmax). Finally,
if λ∗ ∈ [λmin, λmax] is found such that f(λ∗) = 0, then, by
Theorem 1, BT θ∗ = arcsin(ψ) = arcsin(x+ λ∗y).

Lemma 4 offers a checkable synchronization condition for
cycles, which leads to the following theorem.

Theorem 3. (Sync conditions for cycle graphs) Consider
the Kuramoto model [2] with a cycle graph G(V, E , A) and
ω ∈ 1⊥n . Consider the inequality condition [17] for γ ∈
[0, π/2[. The following statements hold.

(C1) Exact sync condition for symmetric natural fre-
quencies: Assume that ω ∈ 1⊥n is such that BTL†ω is a
symmetric vector 4. There is a locally exponentially stable
equilibrium θ∗ ∈ ∆̄G(γ) if and only if condition [17] holds.
Moreover, in this case BT θ∗=arcsin(BTL†ω).

(C2) Tight sync condition for low-dimensional cycles:
Assume the network contains n ∈ {3, 4} oscillators.
Consider a compact interval Ω ⊂ R, and let Ω =
(Ω1, . . . ,Ωn) ⊂ Rn be the set of vectors with components
Ωi ∈ Ω for all i ∈ {1, . . . , n}. For all ω ∈ LΩ there exists
a locally exponentially stable equilibrium θ∗ ∈ ∆̄G(γ) if and
only if condition [17] holds.

(C3) General cycles and network parameters: In general
for n ≥ 5 oscillators, condition [16] does not guarantee
existence of an equilibrium θ∗ ∈ ∆G(π/2). As a sufficient
condition, there exists a locally exponentially stable equilib-
rium θ∗ ∈ ∆̄G(γ), γ ∈ [0, π/2[ , if

∥∥∥BTL†ω∥∥∥
∞
≤

min{i,j}∈E aij

max{i,j}∈E aij + min{i,j}∈E aij
· sin(γ) . [18]

Proof To prove the statements of Theorem 3 and to show
the existence of an equilibrium θ∗ ∈ ∆̄G(γ), we invoke the
equivalent formulation via the function f(λ) as constructed
in Lemma 4. In particular, we seek to prove the statement:

Let λmin = maxi∈{1,...,n}
− sin(γ)−xi

yi
and λmax =

mini∈{1,...,n}
sin(γ)−xi

yi
. The function f : [λmin, λmax] →

R defined by f(λ) =
∑n
i=1 arcsin(xi + λyi) satisfies

f(λmin) < 0 < f(λmax) (equivalently there is λ∗ ∈
[λmin, λmax] such that f(λ∗) = 0) if and only if the con-
dition ‖x‖∞ = ‖BTL†ω‖∞ ≤ sin(γ) is satisfied.

Statement (C1): For a symmetric vector x = BTL†ω,
all odd moments about the (zero) mean vanish, that is,∑n
i=1 x

2p+1
i = 0 for p ∈ N0. Since the Taylor series of the

arcsin about zero features only odd powers, we have f(0) =∑n
i=1 arcsin(xi) =

∑n
i=1

∑∞
p=0

(2p)!

22p(p!)2(2p+1)
x2p+1
i = 0. State-

ment 1) follows then immediately from Lemma 4.
Statement (C2): By statement (C1), statement (C2) is

true if BTL†ω is symmetric. Statement (C2), can then be
proved in a combinatorial fashion by considering all devia-
tions from symmetry arising for three or four oscillators. In
order to continue recall that arcsin(x) is a super-additive func-
tion for x ∈ [0, 1] and a sub-additive function for x ∈ [−1, 0],
that is, arcsin(x) + arcsin(y) < arcsin(x+ y) for x, y > 0 and
x + y ≤ 1, arcsin(x) + arcsin(y) > arcsin(x + y) for x, y < 0
and x+ y ≥ −1, and arcsin(x) + arcsin(y) = arcsin(x+ y) for
x = y = 0. We now consider each case n ∈ {3, 4} separately.

Proof of sufficiency for n = 3: Assume that ‖x‖∞ ≤
sin(γ). Since the case f(λ = 0) = 1Tn arcsin(x) = 0 for a
symmetric vector x ∈ R3 is already proved, we consider now
the asymmetric case f(λ = 0) = 1Tn arcsin(x) > 0 (the proof
of the case 1Tn arcsin(x) < 0 is analogous). Necessarily, it
follows that at least two elements of x are negative: if one
element of x is zero, say x1 = 0, then we fall back into the
symmetric case x2 = −x3; on the other hand, if only one
element is negative, say x1 < 0 and x2, x3 > 0, then we ar-
rive at a contradiction since f(λ = 0) =

∑n
i=1 arcsin(xi) =

− arcsin(x2 + x3) + arcsin(x2) + arcsin(x3) < 0 due to super-
additivity and since x1 = −x2 − x3. Hence, without loss of
generality, let x = [a+b,−a,−b]T where a, b > 0. By assump-
tion ‖x‖∞ ≤ sin(γ). It follows that a+ b ≤ sin(γ), a < sin(γ),

b < sin(γ), and λmin = maxi∈{1,...,n}
− sin(γ)−xi

yi
< 0.

Due to super-additivity, f(λ = 0) = 1Tn arcsin(x) =
arcsin(a + b) − (arcsin(a) + arcsin(b)) > 0. Now we evaluate
f(λ) at the lower end of its domain [λmin, λmax] and obtain

f(λmin) = arcsin(a+ b+ y1λmin) + arcsin(−a+ y2λmin)

+ arcsin(−b+ y3λmin) . [19]

By the definition of λmin, at least one summand on the
right-hand side of [19] equals −γ. Furthermore, notice that
the second and the third summand are negative, and the
first summand satisfies arcsin(a + b + y1λmin) ≥ −γ. If
arcsin(a + b + y1λmin) = −γ, then clearly f(λmin) < 0. In
the other case, arcsin(a+ b+ y1λmin) > −γ, it follows that

f(λmin) < arcsin(a+ b+ y1λmin)− γ︸ ︷︷ ︸
<0

+ max
{

arcsin(−a+ y2λmin), arcsin(−b+ y3λmin)
}︸ ︷︷ ︸

<0

< 0 .

Since f(λmin) < 0 < f(0) ≤ f(λmax), it follows from Lemma
4 that there exists a stable equilibrium θ∗ ∈ ∆̄G(γ). The
sufficiency is proved for n = 3.

Proof of sufficiency for n = 4: Assume that ‖x‖∞ ≤
sin(γ). Without loss of generality, let argmaxi{1,...,4}{|xi|}
be a singleton (otherwise x is necessarily symmetric), and let
x ∈ 1⊥n be such that f(λ = 0) = 1Tn arcsin(x) > 0 (the proof
of the case 1Tn arcsin(x) < 0 is analogous). Necessarily, it fol-
lows that at least two elements of x are negative: if only one
element of x is negative, say x1 < 0 and x2, x3, x4 ≥ 0, then we

4A vector x ∈ 1⊥n is symmetric if its histogram is symmetric, that is, up to

permutation of its elements, x is of the form x = [−c,+c]T for n even and

some vector c ∈ Rn/2 and x = [−c, 0,+c]T for n odd and some c ∈ R(n−1)/2.
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arrive at a contradiction since f(λ = 0) =
∑n
i=1 arcsin(xi) =

− arcsin(x2 + x3 + x4) + arcsin(x2) + arcsin(x3) + arcsin(x4)
is zero only in the symmetric case (for example, x2 = x3 =
0 < x4 = −x1) and strictly negative otherwise (due to super-
additivity). If exactly one element of x is positive (and three
are non-postive), say x = [a+b+c,−a,−b,−c]T for a, b, c ≥ 0
and a+ b+ c = ‖x‖∞ ≤ sin(γ), then, an analogous reasoning
to the case n = 3 leads to f(λmin) < 0.

It remains to consider the case of two positive and two
negative entries. Without loss of generality let x1 ≥ x2 > 0 >
x3 ≥ x4, where x1 6= −x4 and x2 6= −x3 (this is the sym-
metric case),

∑n
i=1 xi = 0, and ‖x‖∞ ≤ sin(γ) by assump-

tion. It follows that λmin = maxi∈{1,...,n}
− sin(γ)−xi

yi
≤ 0.

Since f(λ = 0) = 1Tn arcsin(x) > 0 and 1Tnx = 0, it fol-
lows from super-additivity that ‖x‖∞ = max{x1, x2}, and
the set argmax{x1, x2} must be a singleton (otherwise we
arrive again at a contradiction or at the symmetric case).
Suppose that ‖x‖∞ = max{x1, x2} = x1, then necessarily
|x2| < |x3| ≤ |x4| < |x1| ≤ sin(γ). It follows that λmin < 0.

Again, we evaluate the sum f(λmin) =
∑4
i=1 arcsin(xi +

yiλmin). Notice that the last two summands arcsin(x3 +
y3λmin) and arcsin(x4 + y4λmin) are negative (since 0 >
x3 ≥ x4 and λmin < 0), and the first two summands sat-
isfy min

{
arcsin(x1 + y1λmin), arcsin(x2 + y2λmin)

}
≥ −γ. If

min
{

arcsin(x1 + y1λmin), arcsin(x2 + y2λmin)
}

= −γ, we have

f(λmin) = arcsin(x3 + y3λmin) + arcsin(x4 + y4λmin)︸ ︷︷ ︸
<0

+
(
−γ + max

{
arcsin(x1 + y1λmin), arcsin(x2 + y2λmin)

})︸ ︷︷ ︸
<0

< 0.

In case that min
{

arcsin(a+y1λmin), arcsin(b+y2λmin)
}
> −γ,

we obtain mini∈{3,4}{arcsin(xi + yiλmin)} = −γ and

f(λmin) < arcsin(x1 + y1λmin) + arcsin(x2 + y2λmin)− γ
+ max
i∈{3,4}

{
arcsin(xi + yiλmin)

}
.

Since |x2| < |x3| ≤ |x4| < |x1| ≤ sin(γ), it readily follows
that arcsin(x1 + y1λmin) − γ < 0 and arcsin(x2 + y2λmin) +
maxi∈{3,4}

{
arcsin(xi + yiλmin)

}
< 0. We conclude that

f(λmin) < 0. Since f(λmin) < 0 < f(0) ≤ f(λmax), it fol-
lows from Lemma 4 that there exists a stable equilibrium
θ∗ ∈ ∆̄G(γ). The sufficiency is proved for n = 4.

Proof of necessity for n ∈ {3, 4}: We prove the necessity

by contradiction. Consider a compact cube Q = [−c,+c]|E| ⊂
R|E|, where c > 0 satisfies c > sin(γ). Assume that for every
x ∈ 1⊥n , even those satisfying ‖x‖∞ ≥ c, there exists λ ∈ R
such that the cycle constraint 1Tn arcsin(x + λy) = 0 and
the norm constraint ‖x + λy‖∞ ≤ sin(γ) are simultaneously
satisfied. For the sake of contradiction, consider now the sym-
metric case, where x ∈ 1⊥n has components xi ∈ {−c,+c, 0}.
As proved in statement (C1), λ∗ = 0 uniquely solves the cycle
constraint equation 0 = f(λ∗ = 0) =

∑n
i=1 arcsin(xi +λ∗y) =∑n

i=1 arcsin(±c) for any value of c ∈ [0, 1]. However, the norm
constraint ‖x+ λ∗y‖∞ = ‖x‖∞ ≤ sin(γ) can be satisfied only
if ‖x‖∞ ≤ sin(γ) < c. We arrive at a contradiction since we
assumed ‖x‖∞ ≥ c > sin(γ).

We conclude that, if x = BTL†ω is bounded within a com-
pact cube Q = [−c,+c]|E| ⊂ R|E| with c ≤ sin(γ), the con-
dition [17] is also necessary for synchronization of all con-
sidered parametric realizations of BTL†ω within this com-
pact cube Q. For the compact set Ω = Ωn ⊂ Rn, it follows
that the image BTL† · LΩ = BTΩ equals the compact cube

Q=
[
−
(
maxω∈Ω ω−minω∈Ω ω

)
, +
(
maxω∈Ω ω−minω∈Ω ω

)]|E|
.

Hence, the condition [17] is necessary for synchronization of
all considered parametric realizations of ω in the compact set
LΩ. This concludes the proof of statement (C2).

Statement (C3): To prove the first part of statement (C3)
we construct an explicit counterexample. Consider a cycle of
length n ≥ 5 with unit-weighed edges ai,i+1 = 1, and let

ω = α ·
[
1 + 1

n−3
0 −2 1− 1

n−3
0n−4

]T
,

where α ∈ [0, 1]. For α < 1, these parameters satisfy the nec-
essary conditions [8] and [9]. For the given parameters, we
obtain the non-symmetric vector x = BTL†ω given by

x = BTL†ω = α ·
[
−1 −1 1 1

n−3
1(n−3)

]T
. [20]

Notice that ‖x‖∞ = α < 1, x is non-symmetric, and x is the
minimum ∞-norm vector ψ = x+ λ1n for λ ∈ R.

In the following, we will show that there exists no equi-
librium in limγ↑π/2 ∆̄G(γ) = ∆̄G(π/2). Consider the function

f(λ) = arcsin(1Tnx+λ1n) whose domain is centered symmet-
rically around zero, that is, λmax = −λmin = limγ↑π/2(sin(γ)−
α) = 1 − α. Notice that the domain of f vanishes as α ↑ 1.
For n → ∞ we have that limn→∞ f(0) = − arcsin(α) +
limn→∞(n− 3) · arcsin(α/(n− 3)) = − arcsin(α) + α. Hence,
as n → ∞ and α ↑ 1, we obtain f(0) = −π

2
+ 1 < 0. Due

to continuity of f with respect to α, n, λ, we conclude that
for n ≥ 5 sufficiently large and α < 1 sufficiently large,
there is no λ∗ such that f(λ∗) = 0. Hence, the condition
‖x‖∞ = ‖BTL†ω‖∞ < 1 does generally not guarantee ex-
istence of θ∗ ∈ ∆̄G(π/2) ⊃ ∆G(π/2). A second numerical
counterexample will be constructed in Example 1 below.

A sufficient condition for the existence of an equilib-
rium θ∗ ∈ ∆G(γ) is xi + λminyi ≤ 0 ≤ xi + λmaxyi
for each i ∈ {1, . . . , n}, which is equivalent to condition
[18]. Indeed if condition [18] holds, we obtain f(λmin) =∑n
i=1 arcsin(xi + λminyi) as a sum of nonpositive terms and

f(λmax) =
∑n
i=1 arcsin(xi + λmaxyi) as a sum of nonnegative

terms. Since 1Tnx = 0 and generally x 6= 0n (otherwise we
fall back in the symmetric case), at least one xi is strictly
negative and at least one xi is strictly positive, and it follows
that f(λmin) < 0 < f(λmax). The statement (C3) follows then
immediately from Lemma 4. This concludes the proof.

In the following, define a patched network {G(V, E , A), ω}
as a collection of subgraphs and natural frequencies ω ∈ 1⊥n ,
where (i) each subgraph is connected, (ii) in each subgraph
one of the conditions (G1),(G2),(G3),(G4), (C1), or (C2) is
satisfied, (iii) the subgraphs are connected to another through

edges {i, j} ∈ E satisfying ‖(e|E|i − e
|E|
j )TL†ω‖∞ ≤ sin(γ), and

(iv) the set of cycles in the overall graph G(V, E , A) is equal to
the union of the cycles of all subgraphs. Since a patched net-
work satisfies the synchronization condition [17] as well the
norm and cycle constraints, we can state the following result.

Corollary 4. (Sync condition for a patched network)
Consider the Kuramoto model [2] with a patched network
{G(V, E , A), ω}, and let γ ∈ [0, π/2[. There is a locally ex-
ponentially stable equilibrium θ∗ ∈ ∆̄G(γ) if condition [17]
holds.

Example 1. (Numerical cyclic counterexample and
its intuition) In the proof of Theorem 3, we provided an ana-
lytic counterexample which demonstrates that condition [17]
is not sufficiently tight for synchronization in sufficiently large
cyclic networks. Here, we provide an additional numerical
counterexample. Consider a cycle family of length n = 5+3·p,
where p ∈ N0 is a nonnegative integer. Without loss of gener-
ality, assume that the edges are labeled by {i, i+ 1} (mod n)
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for i ∈ {1, . . . , n} such that Ker (B) = span(1n). Assume that
all edges are unit-weighed ai,i+1 (mod n) = 1 for i ∈ {1, . . . , n}.
Consider α ∈ [0, 1[, and let

ω = α ·
[
−1/2 2 0p+1 3/2 02p+1

]T
.

For n = 5 (p = 1) the graph and the network parameters are
illustrated in Figure . For the given network parameters, we
obtain the non-symmetric vector BTL†ω given by

BTL†ω = α ·
[
1 −1 −1(n−2)/3 1/2 · 12(n−2)/3

]T
.

Analogously to the example provided in the proof of Theorem
3, ‖BTL†ω‖∞ = α and BTL†ω is the minimum ∞-norm vec-
tor BTL†ω + λ1n for λ ∈ R. In the limit α ↑ 1, the necessary
condition [8] is satisfied with equality. In Figure , for α ↑ 1,
we have that ω2 = 2, and the necessary condition [8] reads
as a12 + a23 = |ω2| = 2, and the corresponding equilibrium
equation sin(θ1 − θ2) + sin(θ3 − θ2) = 2 can only be satisfied
if θ1 − θ2 = π/2 and θ3 − θ2 = π/2. Thus, with two fixed
edge differences there is no more “wiggle room” to compen-
sate for the effects of ωi, i ∈ {1, 3, 4, 5}. As a consequence,
there is no equilibrium θ∗ ∈ ∆̄G(π/2) for α = 1 or equivalently
‖BTL†ω‖∞ = 1. Due to continuity of the equations [6] with
respect to α, we conclude that for α < 1 sufficiently large
there is no equilibrium either. Numerical investigations show
that this conclusion is true, especially for very large cycles.
For the extreme case p = 107, we obtain the critical threshold
α ≈ 0.9475 where θ∗ ∈ ∆̄G(π/2) ceases to exist. �

Notice that both the counterexample used in the proof
of Theorem 3 and the one in Example 1 are at the bound-
ary of the admissible parameter space, where the necessary
condition [8] is marginally satisfied. In the next section, we
establish that such “degenerate” counterexamples do almost
never occur for generic network topologies and parameters.

To conclude this section, we remark that the main tech-
nical difficulty in proving sufficiency of the condition [17] for
arbitrary graphs is the compact state space Tn and the non-
monotone sinusoidal coupling among the oscillators. Indeed, if
the state space was Rn and if the oscillators were coupled via
non-decreasing and odd functions, then the synchronization
problem simplifies tremendously and the counterexamples in
the proof of Theorem 3 and in Example 1 do not occur; see
[46] for an elegant analysis based on optimization theory.

Robust Synchronization in Presence of Uncertainty
In order to evaluate the synchronization condition [17], all
network parameters aij and ωi need to be known exactly. In
many applications, this global knowledge is an unrealistic as-
sumptions, the network parameters may be uncertain, or even
not constant over time. For instance, in power networks, the
load and generation profiles Pm,i and Pl,i as well as the volt-
age magnitudes |Vi| may be known only with a certain degree

27

27 27

27 27

ω1 = −α/2

ω4 = −3α/2

ω2 = 2α

ω3 = 0

ω5 = 0

1

2

3

45

Fig. 10. Cycle graph with n = 5 nodes and non-symmetric choice of ω.

of accuracy, they have underlying unmodeled (or even un-
known) dynamics, and they can be regarded as constant only
over short time intervals. Hence, the associated natural fre-
quencies ωi and the coupling weights aij = |Vi| · |Vj | · =(Yij)
are known only within certain ranges, and a synchronization
test should be robust with respect to parametric variations.

In the following, we take parametric uncertainties into
account and extend the synchronization condition [17] to
interval-valued network parameters. We consider a set of
interval-valued natural frequencies defined by

Ω =
{
ω ∈ 1⊥n : ωi ≤ ωi ≤ ωi ∀ i ∈ {1, . . . , n}

}
,

that is, for a vector ω ∈ Ω each entry is subject to upper
and lower bounds. Accordingly, consider a set of edge weights
defined by the interval-valued adjacency matrix5

A =
{
A ∈ Rn×n : 0 < aij ≤ aij = aji ≤ aij ∀ {i, j} ∈ E ,

aij = aji = 0 ∀ {i, j} 6∈ E
}
.

Notice that both Ω and A are convex sets and simply hy-
percubes in the vector spaces 1⊥n and Rn×n. We define the
associated discrete sets of vertices of Ω and A by

vert(Ω) =
{
ω ∈ 1⊥n : ωi ∈ {ωi, ωi} ∀ i ∈ {1, . . . , n}

}
,

vert(A) =
{
A ∈ Rn×n : aij = aji ∈ {aij , aij} ∀ {i, j} ∈ E ,

aij = aji = 0 ∀ {i, j} 6∈ E
}
.

Accordingly, consider the associated interval-valued Laplacian

L =
{
L ∈ Rn×n : L = diag

({∑n

j=1
aij
}n
i=1

)
−A ,A ∈ A

}
and its discrete vertex set

vert(L) =
{
L ∈ Rn×n : L = diag

({∑n

j=1
aij
}n
i=1

)
−A ,

A ∈ vert(A)
}
.

In the following, denote the convex hull of a set S by conv(S).
By construction, we have that Ω = conv(vert(Ω)), A =
conv(vert(A)), and L = conv(vert(L)).

Next, we consider a connected interval-valued network
{G(V, E ,A) , ω} with A ∈ A and ω ∈ Ω. Consider the as-
sociated interval-valued Laplacian equation

Lx = ω , [21]

where x ∈ 1⊥n is a variable and L ∈ L and ω ∈ Ω are param-
eters. The set of solutions x ∈ X to [21] is given by

X =
{
x ∈ 1⊥n : x = L†ω ,L ∈ L , ω ∈ Ω

}
.

Accordingly, define the associated discrete vertex set

vert(X ) ={
x ∈ 1⊥n : x = L†ω ,L ∈ vert(L) , ω ∈ vert(Ω)

}
.

The following lemma for interval-valued linear systems is
known for non-singular and interval-valued M-matrices [47]
and circuit-tableau matrices [48, 49]. To best of our knowledge
this result is unknown for Laplacian matrices (corresponding
to singular M-matrices or circuit-tableau matrices).

5The following analysis can be easily extended to the case of zero edge weights
implying a non-constant edge set E as long as the associated graph remains
connected. Since the resulting notation is cumbersome, and since the combi-
natorial insights are not very surprising, we omit it here.
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Lemma 5. (Interval-valued Laplacian equations) Con-
sider the interval-valued Laplacian equation [21]. The set
of solutions X is contained in the convex hull of its vertex set
vert(X ), that is, conv(X ) = conv(vert(X )).

Proof We first analyze the interval-valued Laplacian
equation [21] for the case that Ω is a singleton, that is, we
consider a fixed value of ω ∈ 1⊥n and parametric variations of
L ∈ L. By [3, Lemma III.9], we have for any Laplacian L cor-
responding to a connected, undirected, and weighted graph
and for any arbitrary constant δ 6= 0 that

(L+ (δ/n) 1n×n)−1 = L† + (1/δn) 1n×n ,

Consequently, for any L ∈ L and ω ∈ 1⊥n , we have that

x = L†ω =
(
L† + (1/δn) 1n×n

)
ω

= (L+ (δ/n) 1n×n)−1 ω

=
(∑

{i,j}∈E
aij(e

n
i − enj ) · (eni − enj )T + (δ/n) 1n1Tn︸ ︷︷ ︸

=Q

)−1

ω .

Thus, x ∈ 1⊥n is the solution to the equation Qx = ω, where
Q is a regular interval-valued matrix, and each parametric
variation 0 < aij ≤ aij = aji ≤ aij , {i, j} ∈ E enters

additively via a rank-one matrix. Hence, the regularity as-
sumptions of the interval-valued analyses in [48, Theorem 1]
and [49, Theorem 4.2] are satisfied, and we conclude that
conv(X ) = conv(vert(X )).

Next, consider the case that L is a singleton, that is, we
consider only variations of ω ∈ Ω. Recall that L† is a Lapla-
cian matrix corresponding to a connected, undirected, and
weighted graph [3]. Let the edge weights of this graph be
denoted by ãij = ãji ≥ 0. Hence, for any ω ∈ Ω, we obtain

x = L†ω =


∑n
j=1 ã1j(ω1 − ωj)

...∑n
j=1 ãnj(ωn − ωj)

 �

∑n
j=1 ã1j(ω1 − ωj)

...∑n
j=1 ãnj(ωn − ωj)

 ,

x = L†ω =


∑n
j=1 ã1j(ω1 − ωj)

...∑n
j=1 ãnj(ωn − ωj)

 �

∑n
j=1 ã1j(ω1 − ωj)

...∑n
j=1 ãnj(ωn − ωj)

 ,
where � and � denote the component-wise inequalities. This
direct inspection shows that, for fixed L, we have that
conv(X ) = conv(vert(X )), that is the extremal values of the
solution x are achieved for extremal parameters ω ∈ vert(Ω).

Since the parametric variations L ∈ L and ω ∈ Ω are
independent of each other, the lemma follows.

We obtain the following corollary to Lemma 5.

Corollary 5. (Extremal solutions for extremal parame-
ters) Consider the interval-valued Laplacian equation [21]
and let c ∈ Rn. Then extremal values for cTx = cTL†ω are
obtained for extremal parameters, that is,

max
L∈L , ω∈Ω

cTL†ω = max
L∈vert(L) , ω∈vert(Ω)

cTL†ω ,

min
L∈L , ω∈Ω

cTL†ω = min
L∈vert(L) , ω∈vert(Ω)

cTL†ω .

Proof The proof is based on the analysis in [48, Theo-
rem 2]. We prove only the maximizing case here. The proof
for the minimizing case can be obtained analogously.

Since the sets L and Ω are compact and cTL†ω is a con-
tinuous function6 of ω ∈ Ω and L ∈ L, the function cTL†ω
attains its maximum for some ω∗ ∈ Ω and L∗ ∈ L.

By Lemma 5, there exist matrices L1, . . . , L|E| ∈ vert(L),
vectors v1, . . . , vn ∈ vert(Ω), and nonnegative numbers

λ1, . . . , λ|E|, µ1, . . . , µn with
∑|E|
i=1 λi=1 and

∑n
j=1 µj =1 such

that
(
L∗
)†

=
∑|E|
i=1 λiL

†
i and ω∗ =

∑n
j=1 µjvj . It follows that

cT
(
L∗
)†
ω∗ = cT

(∑|E|

i=1
λiL

†
i

)∑n

j=1
µjvj

=
∑|E|

i=1

∑n

j=1
λiµj

(
cTL†ivj

)
≤ max

i∈{1,...,|E|} , j∈{1,...,n}
cTL†ivj

since any weighted average of numbers is bounded from above
by the largest of the numbers. Thus, maxL∈L,ω∈Ω c

TL†ω is
attained at a vertex of the parameter space.

We are now ready to state the main result of this sec-
tion. Namely, if we can guarantee the synchronization con-
dition [17] for extremal parameters, then we can guarantee
synchronization for all parametric variations and vice versa.

Theorem 6. (Robust synchronization) Consider a con-
nected network {G(V, E ,A) , ω} with interval-valued weights
A ∈ A and natural frequencies ω ∈ Ω. Let L be the associated
set of interval-valued Laplacian matrices, and let γ ∈ [0, π/2[.
The following statements are equivalent.

1) Parametric synchronization condition:∥∥∥BTL†ω∥∥∥
∞
≤ sin(γ) ∀L ∈ L , ω ∈ Ω ; [22]

2) Worst-case synchronization condition:

max
L∈vert(L) , ω∈vert(Ω)

∥∥∥BTL†ω∥∥∥
∞
≤ sin(γ) . [23]

Proof The kth row of BT reads as bTk = eni − enj , where
{i, j} ∈ E . Thus condition [22] is true if and only if

sin(γ) ≥ max
L∈L , ω∈Ω

∥∥∥BTL†ω∥∥∥
∞

= max
k

max
L∈L , ω∈Ω

∣∣∣bTk L†ω∣∣∣
= max

k
max

L∈vert(L) , ω∈vert(Ω)

∣∣∣bTk L†ω∣∣∣
= max

L∈vert(L) , ω∈vert(Ω)

∥∥∥BTL†ω∥∥∥
∞
,

where the second equality follows from Corollary 5. The latter
statement is equivalent to condition [23].

The robust synchronization condition [23] in Theorem 6
is exact, but its evaluation is computationally expensive since
all vertices of the parameter-space need to be sampled in a
combinatorial way. We found that randomized Monte Carlo
sampling methods or simplex-type algorithms perform well in
practice and quickly deliver an accurate estimate of the quan-
tity maxL∈vert(L) , ω∈vert(Ω)

∥∥BTL†ω∥∥∞. For certain topolo-
gies, such as acyclic ones, it is also possible to analytically
determine the maximizing vertices beforehand, and the combi-
natorial condition [23] reduces to a scalar one. In the section
Synchronization Assessment for Power Networks, Theorem 6
is illustrated with different examples.

Statistical Synchronization Assessment
After having established that the synchronization condition
[17] is necessary and sufficient for particular network topolo-
gies and parameters, we now validate both its correctness and
its accuracy for arbitrary networks.

6Continuity of L†ω with respect to the weights aij follows since L†ω =

Q−1ω, Q is a continuous function of aij , and the inverse of a matrix is a
continuous function of its elements.
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Statistical Assessment of Correctness. Extensive simulation
studies lead us to the conclusion that condition [17] is correct
in general and guarantees the existence of a stable equilibrium
θ∗ ∈ ∆̄G(γ). In order to validate this hypothesis we invoke
probability estimation through Monte Carlo techniques, see
[50, Section 9] and [51, Section 3] for a comprehensive review.

We consider the following nominal random networks
{G(V, E , A), ω} parametrized by the number n ≥ 2 of nodes,
the width α > 0 of the sampling region for each natural fre-
quency ωi and i ∈ {1, . . . , n}, and a connected random graph
model RGM(p) = G(V, E(p)) with node set V = {1, . . . , n}
and edge set E = E(p) induced by a coupling parameter p ∈
[0, 1]. In particular, given the four parameters (n,RGM, p, α),
a nominal random network is constructed as follows:

(i) Network topology: To construct the network topology, we
consider three different one-parameter families of random
graph models RGM(p) = G(V, E(p)), each parameterized
by the number of nodes n ≥ 2 and a coupling parame-
ter p ∈ [0, 1]. Specifically, we consider (i) an Erdös-Rényi
random graph model (RGM = ERG) with probability p of
connecting two nodes, (ii) a random geometric graph model
(RGM = RGG) with sampling region [0, 1]2 ⊂ R2, con-
nectivity radius p, and (iii) a Watts-Strogatz small world
network (RGM = SMN) [52] with initial coupling of each
node to its two nearest neighbors and rewiring probability
p. If, for a given n ≥ 2 and p ∈ [0, 1], the realization of a
random graph model is not connected, then this realization
is discarded and new realization is constructed;

(ii) Coupling weights: For a given random graph G(V, E(p)),
for each edge {i, j} ∈ E(p), the coupling weight aij = aji >
0 is sampled from a uniform distribution supported on the
interval [1, 10];

(iii) Natural frequencies: For a given n ≥ 2 and α > 0, the
natural frequencies ω ∈ 1⊥n are constructed in two steps.
In a first step, n real numbers qi, i ∈ {1, . . . , n}, are sam-
pled from a uniform distribution supported on [−α,+α],
where α > 0. In a second step, by subtracting the average∑n
i=1 qi/n we define ωi = qi−

∑n
i=1 qi/n for i ∈ {1, . . . , n}

and obtain ω = (ω1, . . . , ωn) ∈ 1⊥n ; and
(iv) Parametric realizations: We consider forty realizations

of the parameter 4-tuple (n,RGM, p, α) covering a wide
range of network sizes n, coupling parameters p, and natu-
ral frequencies ω, which are listed in the first column of
Table 1. The choices of α in these forty cases is such
that7 the resulting equilibrium angles θ∗ satisfy on aver-
age max{i,j}∈E |θ∗i − θ∗j | ≈ π/3.

For each of the forty parametric realizations in (iv), we gen-
erate 30000 nominal models of ω ∈ 1⊥n and G(V, E , A) (con-
ditioned on connectivity) as detailed in (i) - (iii) above, each
satisfying ‖BTL†ω‖∞ < 1. If a sample does not satisfy
‖BTL†ω‖∞ < 1, it is discarded and a new sample is gen-
erated. Hence, we obtain 1.2 · 106 nominal random networks
{G(V, E , A), ω}, each with a connected graph G(V, E , A) and
ω ∈ 1⊥n satisfying ‖BTL†ω‖∞ ≤ sin(γ) for some γ < π/2.

For each case and each instance, we numerically solve
equation [7] with accuracy 10−6 and test the hypothesis

H :
∥∥∥BTL†ω∥∥∥

∞
≤ sin(γ) =⇒ ∃ θ∗ ∈ ∆̄G(γ)

with an accuracy 10−4. The results are reported in Table 1
together with the empirical probability that the hypothesis H
is true for a set of parameters (n,RGM, p, α). Given a set of
parameters (n,RGM, p, α) and 30000 samples, the empirical
probability is calculated as

P̂rob(n,RGM,p,α) =
number of samples satisfying

(
H is true

)
30000

.

Given an accuracy level ε ∈ ]0, 1[ and a confidence level
η ∈ ]0, 1[, we ask for the number of samples N such that the
true probability Prob(n,RGM,p,α)

(
H is true

)
equals the empir-

ical probability P̂rob(n,RGM,p,α) with confidence level greater
than 1− η and accuracy at least ε, that is,

Prob
(∣∣Prob(n,RGM,p,α)

(
H is true

)
− P̂rob(n,RGM,p,α)

∣∣ < ε
)

> 1− η .

By the Chernoff-Hoeffding bound (see [50, Equation (9.14)]
and [53, Theorem 1]), the number of samples N for a given
accuracy ε and confidence η is given as

N ≥ 1

2ε2
log

2

η
. [24]

For ε = η = 0.01, inequality [24] is satisfied for N ≥ 26492
samples. By invoking the Chernoff-Hoeffding bound [24], our
simulations studies establish the following statement:

With 99% confidence level, there is at least 99% ac-
curacy that the hypothesis H is true with probability
99.97 % for a nominal network constructed as in (i) -
(iv) above.

In particular, for a nominal network with parameters
(n,RGM, p, α) constructed as in (i) - (iv) above, with
99% confidence level, there is at least 99% accuracy that
the probability Prob(n,RGM,p,α)

(
H is true

)
equals the

empirical probability P̂rob(n,RGM,p,α), as listed in Ta-
ble 1, that is,

Prob
(∣∣Prob(n,RGM,p,α)

(
H is true

)
− P̂rob(n,RGM,p,α)

∣∣ < 0.01
)
> 0.99 .

It can be seen in Table 1 that for large and dense networks the
hypothesis H is always true, whereas for small and sparsely
connected networks the hypothesis H can marginally fail with
an error of order O(10−4). Thus, for these cases a tighter con-
dition of the form ‖BTL†ω‖∞≤sin(γ)−O(10−4) is required to
establish the existence of θ∗ ∈ ∆̄G(γ). These results strongly
suggest that “degenerate” topologies and parameters (such as
the large and isolated cycles used in the proof of Theorem 3
and in Example 1) are more likely to occur in small networks.

Statistical Assessment of Accuracy.As established in the
previous subsection, the synchronization condition [17] is
a scalar synchronization test with predictive power for al-
most all network topologies and parameters. This remark-
able fact is difficult to establish via statistical studies in the
vast parameter space. Since we proved in statement (G4)
of Theorem 2 that condition [17] is exact for sufficiently
small pairwise phase cohesiveness |θi − θj | � 1 (or equiv-
alently, for sufficiently identical natural frequencies ωi and
sufficiently strong coupling), we investigate the other extreme

7For a fixed weighted graph G(V, E, A), the feasibility of equation [ 7 ] and
the properties of its solution θ∗ are entirely determined by the remaining
parameter α > 0. If α is chosen too large, then there exists no solution θ∗

of the form max{i,j}∈E |θ
∗
i − θ

∗
j | ≤ π/2. Likewise, if α is chosen too small,

then ω ∈ 1⊥n will be nearly the zero vector, and we fall into the case (G4)
of Theorem 2, that is, the angles are perfectly aligned. In order to strike a
balance between these extreme cases, we choose α such that the samples yield
on average max{i,j}∈E |θ

∗
i − θ

∗
j | ≈ π/3.
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max{i,j}∈E |θi−θj | = π/2. To test the corresponding synchro-
nization condition [16] in a low-dimensional parameter space,
we consider a complex network of Kuramoto oscillators

θ̇i = ωi − K ·
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} , [25]

where K > 0 is the coupling gain among the oscillators and
the coupling weights are assumed to be unit-weighted, that is,
aij = aji = 1 for all {i, j} ∈ E . If L is the unweighted Lapla-

cian matrix, then condition [16] reads as K > Kcritical ,
‖L†ω‖E,∞. Of course, the condition K > Kcritical is only suf-
ficient and synchronization may occur for a smaller value of
K than Kcritical. In order to test the accuracy of the condi-
tion K > Kcritical, we numerically found the smallest value of
K leading to synchrony for various network sizes, connected
random graph models, and sample distributions of the natu-
ral frequencies. Here we discuss in detail the construction of
the random network topologies and parameters leading to the
data displayed in Figure 3 of the main manuscript.

We consider the following nominal random networks
{G(V, E , A), ω} parametrized by the number of nodes n ∈
{10, 20, 40, 160}, the sampling distribution SD for the natu-
ral frequencies ω ∈ 1⊥n , and a connected random graph model
RGM(p) = G(V, E(p)) with node set V = {1, . . . , n} and edge
set E = E(p) induced by a coupling parameter p ∈ [0, 1]. In
particular, given the four parameters (n,RGM, p, SD), a nom-
inal random network is constructed as follows:

(i) Network topology and weights: To construct the network
topology, we consider three different one-parameter fami-
lies of random graph models RGM(p) = G(V, E(p)), each
parameterized by the number of nodes n and a coupling
parameter p ∈ [0, 1]. Specifically, we consider (i) an Erdös-
Rényi random graph model (RGM = ERG) with proba-
bility p of connecting two nodes, (ii) a random geomet-
ric graph model (RGM = RGG) with sampling region
[0, 1]2 ⊂ R2, connectivity radius p, and (iii) a Watts-
Strogatz small world network (RGM = SMN) [52] with
initial coupling of each node to its two nearest neighbors
and rewiring probability p. If, for a given n and p ∈ [0, 1],
the realization of a random graph model is not connected,
then this realization is discarded and new realization is
constructed. All nonzero coupling weights are set to one,
that is, aij = aji = 1 for {i, j} ∈ E ;

(ii) Natural frequencies: For a given network size n and sam-
pling distribution SD, the natural frequencies ω ∈ 1⊥n are
constructed in three steps. In a first step, the sampling
distribution of the natural frequencies is chosen. For clas-
sic Kuramoto oscillators with uniform coupling aij = K/n
for distinct i, j ∈ {1, . . . , n}, we know that the two ex-
treme sampling distributions (with bounded support) are
the bipolar discrete and the uniform distribution leading to
the largest and smallest critical coupling, respectively [9].
Here we choose a uniform distribution (SD = uniform)
supported on [−1,+1] or a bipolar discrete distribution
(SD = bipolar) supported on {−1,+1}. In a second step,
n real numbers qi, i ∈ {1, . . . , n}, are sampled from the dis-
tribution SD. In a third step, by subtracting the average∑n
i=1 qi/n we define ωi = qi−

∑n
i=1 qi/n for i ∈ {1, . . . , n}

and obtain ω = (ω1, . . . , ωn) ∈ 1⊥n ; and
(iii) Parametric realizations: We consider 600 realizations of

parameter 4-tuple (n,RGM, p, SD) covering a wide range
of network sizes n, coupling parameters p, and natural fre-
quencies ω. All 600 realizations are shown in Figure 3 in
the main manuscript.

For each of the 600 parametric realizations in (iii), we gen-
erate 100 nominal models of ω ∈ 1⊥n and G(V, E , A) (condi-

tioned on connectivity) as detailed in (i) - (ii) above. Hence,
we obtain 60000 nominal random networks {G(V, E , A), ω},
each with a connected graph G(V, E , A) and natural frequen-
cies ω ∈ 1⊥n . For each sample network, we consider the com-
plex Kuramoto model [25] and numerically find the small-
est value of K leading to synchrony with cohesive phases
satisfying max{i,j}∈E |θi − θj | = π/2. The critical value of
K is found iteratively by integrating the Kuramoto dynam-
ics [25] and decreasing K if the steady state θ∗ satisfies
max{i,j}∈E |θ∗i − θ∗j | < π/2 and increasing K otherwise. We
repeat this iteration until a steady state θ∗ is found satisfying
max{i,j}∈E |θi − θj | = π/2 with accuracy 10−3. Our findings
are reported in Figure 3 in the main manuscript, where each
data point corresponds to the sample mean of 100 nominal
models with the same parameter 4-tuple (n,RGM, p, SD).

Synchronization Assessment for Power Networks
We envision that our proposed condition [17] can be applied
to quickly assess synchronization and robustness in power net-
works under volatile operating conditions. Since real-world
power networks are carefully engineered systems with partic-
ular network topologies and parameters, they cannot be re-
duced to the standard topological random graph models [54],
and we do not extrapolate the statistical results from the pre-
vious section to power grids. Rather, we consider ten widely-
established and commonly studied IEEE power network test
cases provided by [55, 56] to validate the correctness and the
predictive power of our synchronization condition [17].

Statistical Synchronization Assessment for IEEE Systems.
We validate the synchronization condition [17] in a smart
power grid scenario subject to fluctuations in load and gener-
ation and equipped with fast-ramping generation and control-
lable demand. Here, we report the detailed simulation setup
leading to the results shown in Table 1 of the main manuscript.

The nominal simulation parameters for the ten IEEE test
cases can be found in [55, 56]. Under nominal operating con-
ditions, the power generation is optimized to meet the forecast
demand, while obeying the AC power flow laws and respecting
the thermal limits of each transmission line. Thermal limits
constraints are precisely equivalent to phase cohesiveness re-
quirements, that is, for each line {i, j}, the angular distance
|θi − θj | needs to be bounded such that the corresponding
power flow aij sin(θi − θj) is bounded. Here, we found the
optimal generator power injections through the standard op-
timal power flow solver provided by MATPOWER [55].

In order to test the synchronization condition [17] in a
volatile smart grid scenario, we make the following changes to
the nominal IEEE test cases with optimal generation:

(i) Fluctuating loads with stochastic power demand: We as-
sume fluctuating demand and randomize 50% of all loads
(selected independently with identical distribution) to de-
viate from the forecasted loads with Gaussian statistics
(with nominal power injection as mean and standard devi-
ation 0.3 in per unit system);

(ii) Renewables with stochastic power generation: We assume
that the grid is penetrated by renewables with severely fluc-
tuating power outputs, for example, wind or solar farms,
and we randomize 33% of all generating units (selected in-
dependently with identical distribution) to deviate from
the nominally scheduled generation with Gaussian statis-
tics (with nominal power injection as mean and standard
deviation 0.3 in per unit system); and
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(iii) Fast-ramping generation and controllable loads: Following
the paradigm of smart operation of smart grids [57], the
fluctuations can be mitigated by fast-ramping generation,
such as fast-response energy storage including batteries
and flywheels, and controllable loads, such as large-scale
server farms or fleets of plug-in hybrid electrical vehicles.
Here, we assume that the grid is equipped with 10% fast-
ramping generation (10% of all generators, selected inde-
pendently with identical distribution) and 10% controllable
loads (10% of all loads, selected independently with identi-
cal distribution), and the power imbalance (caused by fluc-
tuating demand and generation) is uniformly dispatched
among these adjustable power sources.

For each of the ten IEEE test cases with optimal genera-
tor power injections, we construct 1000 random realizations of
the scenario (i)-(iii) described above. For each realization, we
numerically check for the existence of a solution θ∗ ∈ ∆̄G(γ),
γ ∈ [0, π/2[ to the AC power flow equations, the right-hand
side of the power network dynamics [4]-[5], given by

Pm,i =
∑n

j=1
aij sin(θi − θj) , i ∈ V1 ,

Pl,i = −
∑n

j=1
aij sin(θi − θj) , i ∈ V2 .

[26]

The solution to the AC power flow equations [26] is found
via the AC power flow solver provided by MATPOWER [55].
Notice that, by Lemma 2, if such a solution θ∗ exists, then it
is unique (up to rotational invariance) and also locally expo-
nentially stable with respect to the power network dynamics
[4]-[5]. Next, we compare the numerical solution θ∗ with
the results predicted by our synchronization condition [17].
As discussed in Remark 3, a physical insightful and compu-
tationally efficient way to evaluate condition [17] is to solve
the sparse and linear DC power flow equations given by

Pm,i =
∑n

j=1
aij(δi − δj) , i ∈ V1 ,

Pl,i = −
∑n

j=1
aij(δi − δj) , i ∈ V2 .

[27]

The solution δ∗ of the DC power flow equations [27] is de-
fined uniquely up to the usual translational invariance. Given
the solution δ∗ of the DC power flow equations [27], the left-
hand side of our synchronization condition [17] evaluates to
‖BTL†ω‖∞ = ‖L†ω‖E,∞ = max{i,j}∈E |δ∗i − δ∗j |.

Finally, we compare our prediction with the numerical re-
sults. If ‖BTL†ω‖∞ ≤ sin(γ) for some γ ∈ [0, π/2[, then
condition [17] predicts that there exists a stable solution
θ ∈ ∆̄G(γ), or alternatively θ ∈ ∆̄G(arcsin(‖BTL†ω‖∞)). To
validate this hypothesis, we compare the numerical solution
θ∗ to the AC power flow equations [26] with our prediction
θ∗ ∈ ∆̄G(arcsin(‖BTL†ω‖∞)). Our findings and the detailed
statistics are reported in Table 1 of the main manuscript. It
can be observed that condition [17] predicts the correct phase
cohesiveness |θ∗i − θ∗j | along all transmission lines {i, j} ∈ E
with extremely high accuracy even for large-scale networks,
such as the Polish power grid model featuring 2383 nodes.

Simulation Data for IEEE Reliability Test System 96.The
IEEE Reliability Test System 1996 (RTS 96) is a widely
adopted and relatively large-scale power network test case,
which has been designed as a benchmark model for power
flow and stability studies. The RTS 96 is a multi-area model
featuring 40 load buses and 33 generation buses, as illustrated
in Figure 4 in the main manuscript. The network parameters
and the dynamic generator parameters can be found in [56].

The quantities aij in the coupled oscillator model [1] cor-
respond to the product of the voltage magnitudes at buses i
and j as well the susceptance of the transmission line con-
necting buses i and j. For a given set of power injections at
the buses and branch parameters, the voltage magnitudes and
initial phase angles were calculated using the optimal power
flow solver provided by MATPOWER [55]. The quantities
ωi, i ∈ V2, are the real power demands at loads, and ωi,
i ∈ V1, are the real power injections at the generators, which
were found through the optimal power flow solver provided by
MATPOWER [55]. We made the following changes in order
to adapt the detailed RTS 96 model to the classic structure-
preserving power network model [4]-[5] describing the gen-
erator rotor and voltage phase dynamics. First, we replaced
the synchronous condenser in the original RTS 96 model [56]
by a U50 hydro generator. Second, since the numerical val-
ues of the damping coefficients Di are not contained in the
original RTS 96 description [56], we chose the following val-
ues to be found in [16]: for the generator damping, we chose
the uniform damping coefficient Di = 1 in per unit system
and for i ∈ V1, and for the load frequency coefficient we chose
Di = 0.1 s for i ∈ V2. Third and finally, we discarded an
optional high voltage DC link for the branch {113, 316}.

Bifurcation Scenario in the IEEE Reliability Test System 96.
As shown in the main manuscript, an imbalanced power dis-
patch in the RTS 96 network together with a tripped gener-
ator (generator 323) in the Southeastern (green) area results
in a loss of synchrony since the maximal power transfer is
limited due to thermal constraints. This loss of synchrony
can be predicted by our synchronization condition [17] with
extremely high accuracy. In the following, we show that a
similar loss of synchrony occurs, even if the generator 323 is
not disconnected and there are no thermal limit constraints
on the transmission lines. In this case, the loss of synchrony is
due to a saddle node bifurcation at an inter-area angle of π/2,
which can be predicted accurately by condition [17] as well.

For the following dynamic simulation we consider again an
imbalanced power dispatch: the demand at each load in the
Southeast (green) area is increased by a uniform amount and
the resulting power imbalance is compensated by uniformly
increasing the generation at each generator in the two West-
ern (blue) areas. The imbalanced power dispatch essentially
transforms the RTS 96 into a two-oscillator network, and we
observe the classic loss of synchrony through a saddle-node
bifurcation [9, 18] shown in Figures 11 and 12. In particular,
the network is still synchronized for a load increase of 141% re-
sulting in

∥∥L†ω∥∥E,∞ = 0.9995 < 1. If the loads are increased

by an additional 10% resulting in
∥∥L†ω∥∥E,∞ = 1.0560 > 1,

then synchronization is lost and the areas separate via the
transmission lines {121, 325} and {223, 318}. In summary,
this transmission line scenario nicely illustrates the correct-
ness and the accuracy of the proposed condition [16].

We want to state two remarks on this bifurcation scenario
and its extensions to more detailed power network models. As
discussed in Remark 1, the underlying modeling assumption
of constant voltage magnitudes at the loads may not be true
near the bifurcation point, and a higher-order model includ-
ing voltage dynamics and reactive power flow equations may
reveal different dynamics than the considered model [4]-[5].
Additionally, in real-world power networks the transmission
lines {121, 325} and {223, 318} would be separated at some
smaller inter-area angle γ∗ � π/2 due to thermal limit con-
straints on the transmission lines. This separation at the angle
γ∗ can also be predicted accurately from condition [17], see
the analysis and results in the main paper.
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Fig. 11. Time series of the RTS 96 dynamics for 141% load increase resulting in ‖BTL†ω‖∞ = ‖L†ω‖E,∞ = 0.9995 < 1. Figure (a) depicts the angles θi(t),

Figure (b) shows the frequencies θ̇i(t), and Figure (c) depicts the angular distances |θi(t) − θj(t)| over transmission lines, where the red dashed curves correspond to

the pairs {121, 325} and {223, 318}. The inserts show the power injections ωi, the phase space of the generator dynamics (θ(t), θ̇(t)), and the stationary angles θi.

Fig. 12. Time series of the RTS 96 dynamics for 151% load increase resulting in BTL†ω‖∞ = ‖L†ω‖E,∞ = 1.0560 > 1. Figure (a) depicts the angles θi(t),

Figure (b) depicts the frequencies θ̇i(t), and Figure (c) depicts the angular distances |θi(t)− θj(t)| over transmission lines, which diverge for the pairs {121, 325} and

{223, 318} shown as red dashed curves. The inserts depict the long-time dynamics simulated over 100s.

Synchronization Assessment in Presence of Non-Constant
Voltages and Power Demands. As discussed in Remark 1, the
underlying modeling assumption of constant voltage magni-
tudes at the loads is idealistic and not always true. For ex-
ample, if the loads demand a constant amount of active and
reactive power (rather than demanding constant power and
voltage), then the load bus voltages have to follow the power
demand, and the coupling weights aij = |Vi| · |Vj | ·=(Yij) can-
not be regarded as a-priori known and constant parameters.
Likewise, the active power demand ωi at the loads is variable
and can only be predicted with a certain accuracy.

In the following, we overapproximate uncertain parame-
ters and unmodeled dynamics by the interval-valued param-
eters ωi ≤ ωi ≤ ωi and 0 < aij ≤ aij ≤ aij and apply

the analysis developed in the section Robust Synchronization
in Presence of Uncertainty. To verify the accuracy of the
proposed robust synchronization condition [23], we repeat
similar numerical experiments as in the subsection Statistical
Synchronization Assessment for IEEE Systems. We consider

four representative IEEE test cases of different sizes (9 bus
system by Chow, IEEE 14, IEEE 39 New England, and IEEE
118) with optimal generator power injections, and we make
the following changes to theses nominal test cases:

(i) Fluctuating loads with stochastic active and reactive power
demand: We assume fluctuating demand and randomize all
loads to deviate from their nominal values with Gaussian
statistics, with nominal active and reactive power demands
as mean, a standard deviation 0.3 (in per unit system) for
the reactive power demand, and standard deviation 0.05
(in per unit system) for the active power demand.

(ii) Fast-ramping generation: We assume that the grid is
equipped with 20% fast-ramping generation (20% of all
generators, selected independently with identical distribu-
tion), and the active power imbalance (caused by fluctu-
ating demand) is uniformly dispatched among these ad-
justable power sources. Notice that the fast-ramping gen-
erators do not provide any reactive power support for the
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fluctuating reactive power demands at the loads, which re-
sults in highly variable load bus voltages.

For each of the ten IEEE test cases, we construct 1000
random realizations of the scenario (i)-(ii) described above.
For each realization, we numerically check for the existence
of a solution θ∗ ∈ ∆̄G(γ), γ ∈ [0, π/2[ to the active power
flow equations [26]. Here, the parameters aij = |Vi| ·
|Vj | · =(Yij) are found by solving the reactive power bal-
ance equations using MATPOWER [55]. After obtaining
all network samples and their solutions, we construct the
left-hand side of our robust synchronization condition [23],
maxL∈vert(L) , ω∈vert(Ω)

∥∥BTL†ω∥∥∞. Next, we compare the

numerical solution θ∗ (obtained for each sample) with the
robust synchronization condition [23], which predicts that
θ∗ ∈ ∆̄G(arcsin(maxL∈vert(L) , ω∈vert(Ω

∥∥BTL†ω∥∥∞)). Our
findings are reported are reported in Table 2.

First observe from Table 2 that the load voltages and
power injections fluctuate severely, and the resulting interval-
valued parameters ωi ≤ ωi ≤ ωi and 0 < aij ≤ aij ≤ aij

are allowed to vary in relatively large domains. Despite these
severe uncertainties, it can be observed that the robust syn-
chronization condition [23] still predicts the correct phase
cohesiveness |θ∗i − θ∗j | along all transmission lines {i, j} ∈ E
with relatively high accuracy. Of course, the results in Ta-
ble 2 are more conservative than those in Table 1 of the main
manuscript since condition [23] is based on an overapproxi-
mation of the detailed power network dynamics, that is, cer-
tain vertices of the set {vert(L) , vert(Ω)} do not occur when
numerically solving a detailed power network model, and they
are the dominant source for the accuracy errors in Table 2.

These results show that the robust synchronization con-
dition [23] is indeed capable of predicting the solutions to
the active power flow equations [26] in presence of uncer-
tain voltages (resulting from the unmodeled reactive power
flow equations) and fluctuating loads. Conversely, if the volt-
age magnitudes |Vi| are known to vary within reasonable pre-
specified bounds (for example, |Vi| ∈ [0.95 , 1.05]) and the
loads are predicted with high accuracy, then condition [23]
delivers accurate results in presence of uncertainties.

Table 2. Evaluation of the worst-case condition [23] for four IEEE test cases with fluctuating demand.

Randomized test ∗Correctness: †Accuracy: ‡Cohesive phases: §Variations in power demand ¶Variations in voltages

case (1000 instances): [rad] [rad] [per unit] [per unit]

Chow 9 bus system always true 0.14229 0.15637 0.79891 0.19262
IEEE 14 bus system always true 0.20416 0.18429 1.0537 0.57177
New England 39 always true 0.048628 0.1756 0.81972 0.077967
IEEE 118 bus system always true 0.097533 0.23370 0.37332 0.32301

∗Correctness: maxL∈vert(L) , ω∈vert(Ω)

∥∥BTL†ω∥∥∞≤sin(γ) =⇒ max{i,j}∈E |θ∗i − θ∗j | ≤ γ
†Accuracy: max1000 iterations

∣∣max{i,j}∈E |θ∗i − θ∗j | − arcsin(maxL∈vert(L) , ω∈vert(Ω)

∥∥BTL†ω∥∥∞)
∣∣

‡Phase cohesiveness: max1000 iterations
{

max{i,j}∈E |θ∗i − θ∗j |
}

§Variations in power demand: maxi∈V
{

max1000 iterations Pl,i −min1000 iterations Pl,i

}
¶Variations in load voltages: maxi∈V2

{
max1000 iterations |Vi| −min1000 iterations |Vi|

}
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Table 1. Results of the Monte Carlo simulations to test the hypothesis H.

nominal random network failures of hypothesis H: empirical probability:

parametrized by (n,RGM, p, α) #
(
H is not true

)
P̂rob(n,RGM,p,α)

(10,ERG, 0.15, 6) 104 99.653 %
(10,ERG, 0.3, 8) 65 99.783 %
(10,ERG, 0.5, 14) 15 99.950 %
(10,ERG, 0.75, 25) 0 100 %
(20,ERG, 0.15, 10) 80 99.733 %
(20,ERG, 0.3, 15) 5 99.983 %
(20,ERG, 0.5, 24) 0 100 %
(20,ERG, 0.75, 45) 0 100 %
(30,ERG, 0.15, 13) 22 99.927 %
(30,ERG, 0.3, 20) 0 100 %
(30,ERG, 0.5, 37) 0 100 %
(30,ERG, 0.75, 65) 0 100 %
(60,ERG, 0.15, 20) 1 99.997 %
(60,ERG, 0.3, 40) 0 100 %
(60,ERG, 0.5, 70) 0 100 %
(60,ERG, 0.75, 125) 0 100 %
(120,ERG, 0.15, 35) 0 100 %
(120,ERG, 0.3, 75) 0 100 %
(120,ERG, 0.5, 130) 0 100 %
(120,ERG, 0.75, 235) 0 100 %

(10,RGG, 0.3, 10) 15 99.950 %
(10,RGG, 0.5, 15) 18 99.940 %
(20,RGG, 0.3, 10) 23 99.924 %
(20,RGG, 0.5, 15) 3 99.990 %
(30,RGG, 0.3, 10) 31 99.897 %
(30,RGG, 0.5, 15) 1 99.997 %
(60,RGG, 0.3, 10) 3 99.990 %
(60,RGG, 0.5, 15) 0 100 %
(120,RGG, 0.3, 10) 0 100 %
(120,RGG, 0.5, 15) 0 100 %

(10,SMN, 0.1, 10) 2 99.994 %
(10,SMN, 0.2, 10) 0 100 %
(20,SMN, 0.1, 13) 0 100 %
(20,SMN, 0.2, 13) 0 100 %
(30,SMN, 0.1, 10) 0 100 %
(30,SMN, 0.2, 13) 0 100 %
(60,SMN, 0.1, 7) 0 100 %
(60,SMN, 0.2, 7) 0 100 %
(120,SMN, 0.1, 4) 0 100 %
(120,SMN, 0.2, 4) 0 100 %

over all 1.2 · 106 instances 388 99.968 %

†Overall, 1.2 · 106 instances of {G(V, E, A), ω} were constructed as described in (i) - (iv) above, each satisfying ‖BTL†ω‖∞ < 1. For each
instance, the fixed-point equation [7 ] was solved with accuracy 10−6, and failures of the hypothesis H were reported within an accuracy

of 10−4, that is, failures of order 10−5 were discarded.
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