
SYSTEMS-LEVEL PROGRAMMING ENVIRONMENTS FOR ROBOTICS

SCOTT C. LIVINGSTON

keywords: programming languages, robotics, experiment methods

1. Motivation

Repeatability is a foundation of science, yet robotics experiments are notoriously di�cult
to reproduce. This hinders progress in research and translation of results into industrial
settings. This was once a problem in the world of (pure) software, but has since been largely
solved by standardized languages, libraries, and platforms. We argue that repeatability can
be addressed by the practical and theoretical development of a programming environment
for robotics. This position paper identifies research challenges in that direction and how it
may be a high-impact domain for “cyber-physical systems.”

While none of the previous attempts at robot-specific programming languages have become
widely-adopted, there has been recent progress on other fronts that could provide a basis
for success. In terms of theory, recent work in contract-based design (e.g., [4]) provides
rules to ensure overall correctness when composing modules that individually meet interface
specifications. Progress in synthesis (e.g., [1]) has led to algorithms for converting formal
specifications into finite-state machines realizing desired behavior. If formal specifications
are regarded as providing a sort of high-level assembly language, then the aforementioned
research provides algorithms for linking and assembling. Toward using these methods to
control physical systems, recent work includes the introduction of motion planning algorithms
realizing formal specifications (e.g., [2], [3]). The increasingly popular ROS (robot operating
system) provides a common base on which to build software concerning robotics.

2. Proposed work

We begin with a challenge problem: create a toolchain for the development of robot
software that guarantees specified properties are met by the deployed system. It should permit
reuse of code on distinct platforms, or describe violated properties when this is not possible.
Consider the following scenario. Suppose a person buys a new PR2 robot. While there
is existing infrastructure that simplifies beginning on PR2s, she still must create roslaunch
files to connect implementations of the planning and map-building algorithms to it that
she wants to use. Though this is straightforward (and tedious), she will not automatically
obtain properties about the composed system. Instead, these must be manually computed.
For instance, while the map is being learned, will navigation requests be properly delayed or
modified according to uncertainty? What is the maximum speed at which an obstacle may
be approached before the robot cannot safely stop before collision? Note that answering the
previous question depends on delays introduced by the various subsystems of a ROS graph
and the hardware on the PR2; it is not merely a question of maximum deceleration.

The author is a�liated with the California Institute of Technology. Contact email address is
slivingston@cds.caltech.edu.

1



As apparent from the above, while important infrastructure exists for building robots,
engineers are still required to perform significant manual analysis to verify properties. Thus
we propose as a research program the creation of a programming environment that, in
addition to providing for composition of modules and code generation for target hardware,
provides automation of checking desired properties. This will require breaking through the
pure software perspective a↵orded by existing tools and studying how these interact with
the physical entities of robot hardware.

As a motivating problem context, consider building a con-
troller that realizes a specification tolerant to the uncertain-
ties arising during simultaneous localization and mapping
(SLAM). Task specifications consist of three parts: globally-
scoped behaviors, class-based behaviors, and moving obsta-
cle avoidance. The programming environment would sup-
port libraries for SLAM so that initialization code would be
as simple as import slam; M = slam.init(LaserScan,

DiffDriveModel). During map learning, the current posi-
tion estimate could be obtained with p = M.currentpos().
In the specification, globally-scoped behaviors depend di-
rectly on position, so corresponding code is in terms of p.
Class-based behaviors depend on recurring structures in the

map, e.g., “always eventually visit all o�ces.” An example predicate is p in offices[i],
where offices is an array of rooms identified thus far in the map M. Moving obstacle avoid-
ance would be achieved using a finer discretization. Indeed, it could be solved as a subroutine
imported from another library. This subroutine would provide contracts concerning start and
end-states, which would be used in turn by the compiler to infer realizability of the overall
program. This basic setting is illustrated on the left. Notice the finer grid overlayed on a
coarse quadtree. At compile-time, properties like probability of specification satisfaction can
be inferred from estimates of uncertainty provided by the slam package.

3. Potential impact

The proposed work—creation of a programming enviroment for robotics based on formal
methods—will require us to address open problems for “cyber-physical systems.” Questions
include: How should uncertainty propagate across contracts, yielding a probability of satisfy-
ing requirements for the overall system? How should time semantics be declared at interfaces
among modules, or is it possible to assume a single timing model without loss of generality?

References

[1] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reac-
tive(1) designs. Journal of Computer and System Sciences, 78:911–938, May 2012.

[2] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning with deter-
ministic µ-calculus specifications. In Proc. of the American Control Conference (ACC), pages 735–742,
Montréal, Canada, June 2012.

[3] Marius Kloetzer and Calin Belta. A fully automated framework for control of linear systems from temporal
logic specifications. IEEE Trans. on Automatic Control, 53(1):287–297, February 2008.

[4] Stavros Tripakis, Ben Lickly, Thomas A. Henzinger, and Edward A. Lee. A theory of synchronous
relational interfaces. ACM Transactions on Programming Languages and Systems, 33(4):1–41, July 2011.

2


