
The 3rd NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting

January 9-11, 2017, Arlington, Virginia

Interested in meeting the PIs? Attach post-it note below!

TWC: Medium: Language-Hardware Co-Design for
Practical and Verifiable Information Flow Control

Objective

• Problem: Emerging applications and platforms

require strong security assurance not possible today

-No information leak among VMs in cloud computing

- Integrity guarantee for safety-critical systems

• Objective: Co-design software and hardware with

comprehensive, verifiable information flow assurance

-All software-visible information flows in a system

Ongoing Work

• Label virtualization: Develop a new architecture

and a software-hardware interface to enable

hardware-level enforcement of fine-grained software-

level information-flow policies.

• Full-system prototype: RISC-V Rocket processor

based system on an FPGA. Secure Chisel for static

information flow analysis

• Integrated HW/SW approach to whole-system

security with information flows verified statically

• Control information flow 1) within software 2) within

hardware, and 3) between software and hardware

• Formal security assurance with static information

flow analysis at design time

Technical Approach

SecVerilog: Secure Typed HDL

• Use a security type system for a Verilog Hardware

Description Language (HDL) to control hardware-

level information flows

-Associate security labels with hardware signals

-Statically check hardware-level information flows

• At the HDL level, timing channels show up as explicit

information flows through FSM states

MapData{U} map;

Location{T} destination;
Route{U} naviplan;
Path{T} pathplan;

Wpoint{U} w = naviplan.nextWpoint();

Core 1 Core 2

Controller

DRAM

Multi-core Hardware

OS / Hypervisor

reg [18:0] {L} tag0[256];

reg [18:0] {H} tag1[256];

wire [7:0] {L} index;

wire {Par(way)} way;

wire [18:0] {Par(way)} tag_in;

wire {Par(way)} write_e;

Secure Hardware Design Language

Remove HW timing channels and bugs

Language-Based Information Flow Control

Remove SW-level information flow violations

Software-Hardware Interface for IFC

Convey application-level security policies to

hardware

Full-System Information Flows

Application Software

F
o

rm
al

 In
fo

rm
at

io
n

 F
lo

w
 A

ss
u

ra
n

ce

fo
r

a
W

h
o

le
 S

ys
te

m

PIs: G. Edward Suh and Andrew C. Myers, Cornell University

HW Security Architecture Verification

• Security verification of a simple ARM TrustZone

prototype using static information flow analysis

(ASPLOS’17)

-Security can be compromised by bugs in

implementations of hardware security mechanisms

(e.g., TrustZone, SGX)

- Idea: verify SecVerilog code enforces TrustZone

access controls via information flow control

-Low overheads: 0% slowdown, 0.3% area, 3%

extra code

Efficient Timing Channel Protection

• Lattice priority scheduling (HPCA’16) prevents

insecure timing interference between threads

- Insight: complete timing isolation is expensive and

often unnecessary; instead, constrain a subset of

timing flows with lattice policy instead.

-Result: 23% average speedup

• Secure dynamic cache partitioning (DAC’16) allows

more efficient sharing of cache between high- and

low-security levels, without timing channel leakage

-Result: 13% avg speedup over static partitioning

• Quantifiable information flow control for memory

controllers (HPCA’17) enables a principled trade-off

between security and performance

-Result: control performance overhead from 16-43%

reg [18:0] {L} tag0[256];

reg [18:0] {H} tag1[256];

wire [7:0] {L} index;

// Par(0) = L Par(1) = H

wire {Par(way)} way;

wire [18:0] {Par(way)} tag_in;

wire {Par(way)} wr_en;

always @ (posedge clock) begin

if (write_enable) begin

case(way)

0: tag0[index] = tag_in;

1: tag1[index] = tag_in;

endcase

end

end
Security check

Security check in the type system guarantees:

- No explicit information flow from H to L

- No unintended timing channels: when the label of an instruction is L, its

execution time should only be affected by L hardware state

A

B

A ⊑ B Transitive: A ⊑ C

A B

Neither A ⊑ B nor B ⊑ A
A

B

C

