TWC: Medium: Language-Hardware Co-Design for
Practical and Verifiable Information Flow Control

Pls: G. Edward Suh and Andrew C. Myers, Cornell University

Objective HW Security Architecture Verification

* Problem: Emerging applications and platforms » Security verification of a simple ARM TrustZone
require strong security assurance not possible today prototype using static information flow analysis
-No information leak among VMs in cloud computing (ASPLOS17)

- Integrity guarantee for safety-critical systems - Security can be compromised by bugs in

Implementations of hardware security mechanisms
(e.qg., TrustZone, SGX)

- ldea: verify SecVerilog code enforces TrustZone
access controls via information flow control

-Low overheads: 0% slowdown, 0.3% area, 3%

Technical Approach extra code
ﬂ] I
——-! 08 |

Language-Based Information Flow Control
Core 0 Caoe 1 |

* Objective: Co-design software and hardware with
comprehensive, verifiable information flow assurance

- All software-visible information flows in a system

Full-System Information Flows

/ Remove SW-level information flow violations — __
App||Cat|on Software . Tzsgizzfﬁ} r:jlzz’fcination; @ On-chip Network ]
i , & Route{U} naviplan; (&) 1ahun
Path{T} pathplan; § ~ [ Hmlnit
Wpoint{U} w = naviplan.nextWpoint(); 3 -E LE—— ..—J
<‘En CIEJ , L 1M A _{E Sebue
OS /Hypervisor | —— Software-Hardware Interface for IFC =B - EIN Sebug
' Convey application-level security policies to u_c: g B3 L
hardware — S E
\Secure Hardware Design Language "g ,;‘, Narrmal ?.’w'v.:r-y St:';.xr:: \'ot:.‘l'.Uf'!‘.‘:
Remove HW timing channels and bugs u‘:-’ S .. . . :
s e (0 0 = Efficient Timing Channel Protection
r?g [18:0] {H} tI:agl[256]; E ] ] ] ] ,
wize [7:0] (L) index; 5 * Lattice priority scheduling (HPCA'16) prevents
Mire (15:0] (mor(vem) ) oo ins insecure timing interference between threads
wire {Par (way) } write e; — . . . . . . .
-Insight: complete timing isolation Is expensive and
* Integrated HW/SW approach to whole-system often unnecessary; instead, constrain a subset of
security with information flows verified statically timing flows with lattice policy instead.
» Control information flow 1) within software 2) within -Result: 23% average speedup
hardware, and 3) between software and hardware B C
 Formal security assurance with static information E[
flow analysis at design time 1
A A
SecVerilog: Secure Typed HDL « Secure dynamic cache partitioning (DAC’16) allows
* Use a security type system for a Verilog Hardware more efficient sharing of cache between high- and
Description Language (HDL) to control hardware- low-security levels, without timing channel leakage
evel information flows -Result: 13% avg speedup over static partitioning
—Assgcnate security labels with h?‘r‘?ware IS|gnaIs * Quantifiable information flow control for memory
» At the HDL level, timing channels show up as explicit between security and performance
iInformation flows through FSM states - Result: control performance overhead from 16-43%
reg [18:0] {H} tagl[256]; if (write enable) begin OngOIng Work
LERED LIERA e SHReiSs; e T T * Label virtualization: Develop a new architecture
// Par(0) = T Par(l) = H 1: |tagl[index] = tag in; and a software-hardware interface to enable
wire {Par (way) } way; endcase - -
wire [18:0] {Par(way)}) tag in;| | end hardware-level enforcement of fine-grained software-

Security check

wire {Par(way)} wr en; end

level information-flow policies.

Security check in the type system guarantees: . i . i
- No explicit information flow from H to L Full-system prototype: RISC-V Rocket processor

- No unintended timing channels: when the label of an instruction is L, its based SYStem on an FF_)GA- Secure Chisel for static
execution time should only be affected by L hardware state Information flow analysis

[ Interested In meeting the PIs? Attach post-it note below! }

The 39 NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting

National Science Foundation January 9-11, 2017, Arlington, Virginia
WHERE DISCOVERIES BEGIN




