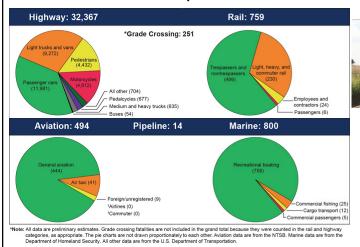
The Promise and Challenges of Transportation Cyber-Physical Systems

Raj Rajkumar

George Westinghouse Professor ECE & Robotics Carnegie Mellon University http://www.ece.cmu.edu/~raj

Carnegie Mellon


Transportation Accidents

- Trains
 - Metro in DC
 - Spain train accident
 - Brooklyn train accident
 - Positive Train Control?
- Planes
 - Asiana plane crash
 - Planes landing at wrong airports or sleeping past the right airport
- Automobiles
 - 1.2 million die every year

Aggregate US Statistics

• 34,434 Transportation Fatalities In 2011

Carnegie Mellon

The Potential

- Zero crashes, injuries and fatalities
- Fewer traffic delays and higher throughput
- Increased mobility for the elderly and the disabled
- Less pollution and higher mileage
- · Higher quality of life

Challenges

- Basic Science
- Connectivity
- Automation
- Smart Cities
- Security and Privacy
- Technical Challenges

Carnegie Mellon

Scientific Challenges

- · A Theory of Uncertainty for CPS
 - Specialized for transportation uncertainties
 - Correct by construction?
- Verification and validation
 - given an arbitrarily large # of real-world conditions
- · Hybrid systems control
 - lateral and longitudinal control
- "ilities":
 - Scalability, dependability, timeliness, maintainability, affordability, ... all together.
- Abstractions for spatio-temporal constraints and multiple time-scales
 Carnegie Mellon

Connectivity Challenges

- · Extending sensing beyond the line of sight
- < 100% market penetration
- Vehicles and safety apps
- Pedestrians at crosswalks
- · Bicyclists: buffers
- · Smarter infrastructure: lights and signs
- Protocols for intersections and grade crossings
- Encryption and certificate revocation

Carnegie Mellon

Automation Challenges

- Exogenous: What happens when GPS is not available, or corrupted? Road, lighting and weather conditions
- Endogenous: What happens when sensors report bad data?
- HMI: What is the role of the human driver?
- Connectivity: Does connected automation help or hurt?
- Correctness: How do we deal with unlimited and special scenarios safely?
- Decision making: How does the CPS choose among bad alternatives when push comes to shove?

Smart Cities

Transportation is at the core of Smart Cities

- Harmonizing speeds
- · Minimizing bus/car collisions with pedestrians
- Managing grade crossings
- · Dealing with failures in convoys
- · Closing the loop with mobility analytics
 - Metropolitan-scale traffic management
- · Improving throughput with adaptive traffic lights
- Interacting with urban design, road design, parking garages

Carnegie Mellon

Security and Privacy

- How do we prevent malicious takeover of intelligent transportation systems?
- How should the system in motion deal with intrusions when detected?
- How do we prevent unauthorized access to privacy information?
 - While allowing access under emergency conditions?

Technical Challenges

- Clouds and cloudlets for transportation CPS
- "Environment in the loop" testing
- Testbeds
- · New technologies like LTE Direct

Carnegie Mellon

Summary

- Too many accidents, injuries and fatalities
- High promise for Transportation CPS
- · Host of challenges
- This workshop is a step towards looking at a research roadmap for the future

The Next Generations

- Next-gen aviation
- Connected automation
 - Vehicle connectivity mandate?
- Positive Train Control?
- Over-conditioning Syndrome
 - Human is no longer ready to take over