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•  Discrete-time control theory assumes sensing and actuation
 occur at specific, precise times. !

•  Off-the-shelf Linux is ubiquitous but does not offer strict        
 timing guarantees – it is a non-real-time OS.!

How to design controllers for non-real-time OS’s?!

Conclusion	

•  Sensing & actuation are not synchronized in non-RT OS’s!
•  Proposed method gives real-time control guarantees!

Related work!
•  How do sample-time-offsets affect control performance?!
•  Trade-off between preemption robustness and performance?!
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Experimental	Results	

Controller!
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Actual sampling instants!

Control input!

Predictive controller uses timestamped 
sensors & voltages to drive the motor 

angle as desired!

DC Motor!

Physical System 

Beaglebone Black!
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Q:	How	to	implement	real-+me	control	on	a	non-real-+me	OS?	
A:	Real-Time	Unit	facilitates	precise	+ming	in	a	non-RT	environment:	
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TRANS3	longitudinal	dynamics	(with	satura+on)		

x1	–	velocity	
x2	–	angle	of	aZack	
x3	–	pitch	rate	
x4	–	pitch	angle	
u		–	elevator	input	

where K̃H and L̃ are defined as in the statement of Theorem
4.2 and F̃�k := F�k + G�kKH , G̃�k := �G�k((I �
L)�1L + I). Here we used the invertibility of I � L in
Assumption 4.1. Under the relationship q = u � �, (IV.6)
is equivalent to

(u, q) 2
�
(u, q) : (u� q +M⇠)>Wq � 0

for all ⇠ satisfying sat(M⇠) = M⇠
 
. (IV.8)

Using the sector characterization in (IV.8), we show
that the Lyapunov function V along the trajectory (IV.7)
decreases if the LMI (IV.3) is feasible and if ⇠k satisfies
sat(M [k]⇠k) = M [k]⇠k:

Lemma 4.3: If there exist matrices Qi > 0, Si 2 R,
Yi 2 Rm⇥2n for i = 1, . . . , N , and a diagonal matrix
⇤ > 0 in Rm⇥m such that the LMI (IV.3) holds for every
i, j = 1, . . . , N , then the system (IV.7) is well posed and the
following statement on the Lyapunov function V in (III.5)
along the trajectory (IV.7) is true:

(uk � qk +M [k]⇠k)Wqk�0 for all (⇠k, qk) 6= 0

) V (k + 1, ⇠k+1)� �V (k, ⇠k) < 0, (IV.9)

where we define Pi := Q�1
i , W := ⇤�1, Mi := YiQ

�1
i , and

using {↵k,i}Ni=1 in (III.2), M [k] :=
PN

i=1 ↵k,iMi.

Proof: See Section IV. A.
Furthermore, we see from the next lemma that the remain-

ing condition sat(M [k]⇠k) = M [k]⇠k for the decrease of the
Lyapunov function V holds if V (k, ⇠k)  1 and the LMI
(IV.4) is feasible. The condition V (1, ⇠1)  1 is implied by
x>
0 ⌦x0  1 on the initial state x0 and the LMI (IV.5).
Lemma 4.4: Consider the system (IV.7). Suppose that

x>
0 ⌦x0  1 and x̂(0) = 0. If there exist Qi > 0 and Ŝi 2 R

for i = 1, . . . , N , such that the LMI (IV.5) holds for every
i, j = 1, . . . , N , then ⇠1 satisfies V (1, ⇠1)  1 in (III.5)
with Pi = Q�1

i . Furthermore, if such Qi satisfies the LMI
(IV.4) with some matrix Yi 2 Rm⇥2n for i = 1, . . . , N ,
then V (k, ⇠k)  1 implies sat(M [k]⇠k) = M [k]⇠k for every
k 2 N, where M [k] is defined as in Lemma 4.3.

Proof: See Section IV. B.
Since the well-posedness of the systems (IV.7) and (IV.1)

have been proved in Lemma 4.3, we only need to show that
exponential stability follows from Lemmas 4.3 and 4.4.

Since sat(M [1]⇠1) = M [1]⇠1 by Lemma 4.4, it follows
that (u1, q1) in (IV.7) satisfies (u1� q1+M [1]⇠1)>Wq1 � 0
for every diagonal positive definite matrix W 2 Rm⇥m. If
we use W := ⇤�1, then Lemma 4.3 shows that V (2, ⇠2) 
�V (1, ⇠1)  1, and hence the second statement of Lemma
4.4 gives sat(M [2]⇠2) = M [2]⇠2. Continuing in this way, we
achieve the exponential decrease of the Lyapunov function
V (k, ⇠k). Since Pi > 0 for every i = 1, . . . , N , it follows
that V (k, ⇠k) � ✏k⇠kk2 for some ✏ > 0. Thus ⇠k converges
to the origin exponentially.

Using Theorem 4.2, the following example shows how the
offset interval [�,�] varies with the saturation limit ū:

Example 4.5 (Aircraft [24]): Let us consider the longitu-
dinal dynamics of the TRANS3 aircraft in [24]. The aircraft
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Fig. 4: Allowable offset interval [�,�] and saturation limit
ū versus

model is given by ẋ = Ax+Bu, where

A :=

2

664

0 14.3877 0 �31.5311
�0.0012 �0.4217 1 �0.0284
0.0002 �0.3816 �0.4658 0

0 0 1 0

3

775 ,

B := [4.526 �0.0337 �1.4566 0]>, and [x1 x2 x3 x4] :=
x> are the velocity, the angle of attack, the pitch rate, and the
Euler angle rotation of the aircraft about the inertial y-axis
respectively, and u is the elevator input.

Let the sampling period be h = 0.02 sec and the feedback
gain K be the linear quadratic regular for (A,B) with state
weight I and input weight 600. In addition, let the anti-
windup gain L be L = 0. Here we set the matrix ⌦ =
diag(0.05, 20, 20, 20) for the initial condition and the decay
rate � = 1. We used N  5 in the overapproximation (III.1)
with equal partitioning. We note that in this example, an
increase in N did not make the analysis by Theorem 4.2
less conservative since h is small. For small values of h, Ui

in (III.1) and hence B̃cl,i, B̂cl,i in Theorem 4.2 become small
as well as the case of a large N .

Fig. 4 shows the allowable offset interval [�,�] obtained
by Theorem 4.2 for each saturation limit ū. We see that if
ū � 0.170, then the saturation does not affect the allowable
offset. However, we have almost no margin on clock offsets
for ū  0.144. This is because the plant has two unstable
poles 0.0212 ± j0.1670 and the closed-loop system easily
becomes unstable for a small saturation limit ū.

Remark 4.6: (1) If we fix the anti-windup gain L, then
the synthesis technique in Theorem 3.5 can be used in the
context of Theorem 4.2 to compute a stabilizing feedback
gain K.

(2) As in Remark 3.4, we can generalize the result in this
section to the case of the following general-order stabilizer:

zk+1 = Aczk +Bcyk + L1(�k � Cczk �Dcyk)

uk = Cczk +Dcyk + L2(�k � Cczk �Dcyk)

�k = sat(uk).
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3 that if clock offsets are small, then an upper bound on
the L

2-gain derived from Theorem 3.6 is close to the exact
L

2-gain in the no-offset case.

V. CONCLUDING REMARKS

We considered the L

2-gain analysis of sampled-data sys-
tems with asynchronous sensors and controllers. An upper
bound on the L2-gain of the closed-loop system was obtained
via LMIs. First we gave the lifted representation of the
closed-loop system and obtained a sufficient condition for
the closed-loop system to be stable and achieve the desired
L

2-gain performance. Since the derived condition contains
matrices with parametric uncertainty, we next employed
a polytopic overapproximation approach. Finally an active
suspension system was considered to illustrate the proposed
method. Future work involves analyzing robust stability for
systems with model uncertainty in addition to clock offsets.
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3 that if clock offsets are small, then an upper bound on
the L

2-gain derived from Theorem 3.6 is close to the exact
L

2-gain in the no-offset case.

V. CONCLUDING REMARKS

We considered the L

2-gain analysis of sampled-data sys-
tems with asynchronous sensors and controllers. An upper
bound on the L2-gain of the closed-loop system was obtained
via LMIs. First we gave the lifted representation of the
closed-loop system and obtained a sufficient condition for
the closed-loop system to be stable and achieve the desired
L

2-gain performance. Since the derived condition contains
matrices with parametric uncertainty, we next employed
a polytopic overapproximation approach. Finally an active
suspension system was considered to illustrate the proposed
method. Future work involves analyzing robust stability for
systems with model uncertainty in addition to clock offsets.
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stability of sampled-data nonlinear systems,” in Proc. 37th IEEE CDC,
1998.

[25] E. Fridman, A. Seuret, and J.-P. Richard, “Robust sampled-data
stabilization of linear systems: An input delay approach,” Automatica,
vol. 40, pp. 1441–1446, 2004.

[26] A. Seuret, “A novel stability analysis of linear systems under asyn-
chronous samplings,” Automatica, vol. 48, pp. 177–182, 2012.

[27] E. Garcia, P. J. Antsaklis, and A. Montestruque, Model-Based Control
of Networked Systems. Springer, 2014.

[28] G. E. Dullerud, “Computing the L2-induced norm of a compression
operator,” Systems Control Lett., vol. 37, pp. 87–91, 1999.

[29] H. Du and N. Zhang, “H1 control of active vehicle suspensions with
actuator time delay,” J. Sound Vib., vol. 301, pp. 236–252, 2007.

di
st

ur
ba

nc
e 

 a
m

pl
ific

at
io

n	

large uncertainty 

small uncertainty 

time of actuation 	

significant 
degradation for 

clock uncertainty 
larger than 40% 
sampling time  

max robustness 
when actuation 
between sample 

times 

Worst-cast (energy) gain from disturbance to vehicle’s vertical acceleration:	

7.2	

9.0	

8.0	

0 100 200 300 400 500
index

-10

-5

0

5

10

an
gl

e3
1

angle (rad) & volts (V)

angle
ref

0 100 200 300 400 500
index

-10

-5

0

5

10

vo
lts

31

1	 2	

m
ot
or
	sh

ag
	a
ng
le
	(r
ad
)	

-5	

5	

Buffered I/O: 
robust against 

non-RT OS 
preemption!


