Towards Effective and Efficient Sensing-Motion Co-Design of Swarming

 * Rensselaer Polytechnic Institute, ** Wichita State University, ***State University of New York at BuffaloWencen Wu*, Pu Wang**, Zheng Chen**, Animesh Chakravarthy**, Zhi Sun***

Motivations and Challenges

Complex and strongly coupled sensing-motion dynamics of swarming CPS
Inherent environmental uncertainties such as communication delay and package loss, unpredictable and/or confined spaces, and highly spatially and temporally varying environments
Resource constraints of mobile computing entities such as limited computational power, communication capability, and sensing ability

MI Underwater Communications \& Localization

Channel Model for 3D Directional MI Coil

Data information is carried by a time varying magnetic field generated by the modulated sinusoid current along an MI coil antenna at the Tx
Rx retrieves the information by demodulating the induced current along the receiving coil antenna Small sensor can achieve 20 m \& 10 m range in Case 2 and 2 but less than 1 m range in Case 1
High conductive seawater induces significant Eddy current incurring very high path loss

Objectives

The overall research objective is to establish and demonstrate a generic motion-sensing co-

 design procedure thatsignificantly reduces the complexity of mission design for swarming CPS
greatly facilitates the development of effective and efficient control and sensing strategies, which are computation efficient, communication light, and adaptive to various environment uncertainties

Cooperative Motion and Sensing Co-design

Distributed Source Seeking

Source seeking is one of the
fundamental and representative missions for swarming CPS with a range of practical applications We propose a dual-module control approach that achieves fast source seeking in time-varying fields
Key idea: velocity decomposition Linear velocity: motion control
Angular velocity: formation contro Only two nonholonomic mobile robots are needed in 2D
No gradient is estimated \rightarrow reduced computational cost
The algorithm has been validated in multi-robot testbed using both M3pi robots and Kilobots

Effects of Surface Wave

The reflection and surface wave
can significantly increase the
communication range of underwater MI.
If the depth of the underwater

Transmission range can be operating frequency and the larger size coil antennas Influence of the operating frequency and coil antenna size on the MI channel path loss in
the lake water the lake water
As the operating frequency increases from 100 KHz to 15
MHz , the MI path loss decreases at the first and keeps increasing after a point. Path loss can be further reduced by increasing the wire turns of the coil antenna.

MI-based Relative Localization

Multi-path fading-free MI channel \& orthogonality of tri-coil MI antennas \rightarrow accurate, simple, and convenient localization strategy By using 3 coils in orthogonal planes, we can
Estimate distance in each of three directions separately
Estimate distance in each of three directions separately
Calculate angular coordinates of the sensor node to a reference Calculate angular coordinates of
Only one anchor node is needed, e.g., MI data sink, to determine the positions of sensors in 3D space

Path Loss of Uni 3D Receivers

Collision Avoidance

We employ the collision cone approach to determine analytica guidance laws for collision avoidance
These analytical guidance laws lead to computational savings on resource-constrained robotic platforms
These guidance laws are determine
These guidance laws are determined for objects of arbitrary shapes, and do not require the objects to be approximated by circles/polygons as is commonly done in the literature
Two cases are considered for the collision avoidance acceleration magnitude $\left(\mathrm{a}_{\mathrm{A}}\right)$ and direction (δ):
a_{A} is of variable magnitude, and δ is such that a acts orthogonal to the velocity vector of the robot. a_{A} is of constant magnitude, and δ is variable.
Besides collision avoidance, the
 collision cone approach has also been used for:

Analytical laws governing safe
trajectories for a robot to make a trajectories for a robot to make a
precision 3-D maneuver through a precision $3-\mathrm{D}$ maneuver through a
small orifice. The orifice may be fixed, moving and/or closing in size
Analytical laws for area coverage by
mobile robot sensor networks.

Smart-material Actuated Biorobotic Fish

