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I. INTRODUCTION

The most obvious challenges resulting from the tremendous
advances of Very Large Scale Integration (VLSI) technology,
which has now reached the nanometer scale, are design
complexity and robustness issues. Modern Systems-on-Chip
(SoC) and Networks-on-Chip (NoC) accommodate Billions of
transistors on a single die nowadays, and have in fact much in
common with loosely-coupled fault-tolerant distributed sys-
tems: Globally Asynchronous Locally Synchronous (GALS)
[3] is already the dominating design paradigm, and failures of
components due to process variations and operating conditions
(temperature, voltage) are no longer rare events. The resulting
challenges for manufacturing technology [14] and circuit ar-
chitecture [19] are well-known, yet become more pronounced
with every new technology generation.

Another severe threat for the dependability of modern
integrated circuits are dramatically increasing transient failure
rates [4], resulting from ionized particles [1], [6], [11], [20],
cross-talk and ground bouncing [16], [17]. Formerly, ionized
particles caused problems only in aerospace applications [11],
where high-energy particles are abundant due to cosmic rays
interacting with the atmosphere. Nowadays, nanometer feature
sizes combined with reduced voltage swings needed for high
clock speeds and low power consumption have also raised
the error rate of chips operated at sea-level beyond acceptable
limits [1], [6] — despite considerable improvements of VLSI
process technology. The same is true for errors caused by
crosstalk and ground bouncing.

Although classic fault-tolerance techniques like Dual Mod-
ular Redundancy (DMR) and Triple Modular Redundancy
(TMR) also work perfectly well for transient failures, they
obviously cannot withstand arbitrary failure rates. For exam-
ple, TMR fails if more than one of the three input lanes suffer
from a transient failure. In case of high failures rates, this is
not an unlikely event.

II. RESEARCH GOALS

Our goal is to utilize self-stabilizing distributed algorithms
[10] for building extremely robust integrated circuits, in partic-
ular, for critical applications with substantial transient failure

rates e.g. in the aerospace domain. A self-stabilizing algorithm
is guaranteed to resume regular operation from any corrupted
system state, i.e., even from a burst of transient failures hitting
all components of a circuit at the same time. Although there is
a substantial body of work that can be relied upon, substantial
research is required to make self-stabilizing VLSI circuits a
reality.

First of all, classic self-stabilizing algorithms require that
no additional failures occur during the stabilization period,
where the system recovers from past transient failures. In VLSI
circuits, however, we cannot rule out the possibility of also
having a certain fraction of permanently faulty components:
Process variations and bad operating conditions easily cause
components to fail in an arbitrary (Byzantine) [18] way. For
example, an off-spec output signal may easily be interpreted
inconsistently at the input of different receivers. The existing
work on Byzantine fault-tolerant self-stabilization [2], [5],
[13], [15], where a certain number of (unknown) components
may permanently exhibit Byzantine failures (even during sta-
bilization), proves that it is principally possible to cope with
this problem.

Nevertheless, all existing results have been obtained in the
distributed systems context. In order to achieve our goals, all
aspects that are unique to VLSI circuits must be adquately
addressed as well. First of all, it is important to observe
that self-stabilization is a property that cannot be added at
some intermediate level, that is, atop of non-self-stabilizing
lower-level services: A complete state corruption could render
the latter in a possibly irrecoverable state, which does not
allow the intermediate level algorithm to perform any useful
action. Consequently, all basic services (clock generation,
communication scheduling, etc.) must be implemented in a
Byzantine fault-tolerant self-stabilizing manner in order to
guarantee this property at the application level.

In addition, implementing any Byzantine fault-tolerant self-
stabilizing algorithm in a VLSI circuit is particularly challeng-
ing for a number of reasons [12]:

• Computing model: The (usually relatively few) processes
in a classic distributed system are modeled as transition
systems, which map basic operations to zero-time state



transitions. By contrast, in VLSI circuits, Millions of ba-
sic logic gates continuously compute their outputs based
on past inputs. Among the consequences is the potential
of metastability, which has never been considered in
distributed systems research.

• Processing constraints: Classic distributed algorithms are
based on quite powerful basic operations, including nu-
meric processing of arbitrary integer values. By contrast,
basic gates in VLSI circuits have very limited processing
capabilities, typically restricted to Boolean functions.

• Communication constraints: Classic fault-tolerant dis-
tributed algorithms usually assume fully-connected net-
works for exchanging large messages. By contrast, fully-
connected wiring topologies are the exception in VLSI
circuits, even in case of serial communication, and large
messages are out of question.

• Failure models: Classic Byzantine failure models allow an
arbitrary subset of f among n processes in the distributed
system to behave Byzantine faulty, but require n ≥ 3f+1
[9], [18] and an essentially fully connected network [7].
Since the latter cannot be assumed in typical VLSI
circuits, less demanding Byzantine failure models are
required.

Of course, adequately addressing all these issues from scratch
would be too ambitious. Fortunately, we can build on the pow-
erful framework for modeling and analysis of fault-tolerant
asynchronous circuits developed recently [12]. In particular,
in a recent paper [8], we demonstrated that a variant of the
FATAL framework is also applicable to a Byzantine fault-
tolerant self-stabilizing algorithm for clock generation in SoCs.

Thanks to the existing results, our current research concen-
trates on the following major goals:

(1) Extending the present modeling and analysis framework
to support self-stabilization: (a) Generalize specifications
to also cover self-stabilizing components. This primarily
requires to replace correct components with such that
may behave arbitrarily initially and only “gradually”
become correct. (b) Provide an all-digital model for
metastability generation and propagation analysis.

(2) Devising and implementing practical Byzantine fault-
tolerant self-stabilizing algorithms for basic services in
SoCs: (a) Devise self-stabilizing algorithms supporting
realistic Byzantine failure models for sparsely connected
circuit topologies. (b) Devise correctness proofs and
performance analyses. (c) Implement the algorithms in
VHDL and build a research prototype, which allows
experimental evaluation.
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