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Control Systems: The State of our Field

T e
[ Outstanding results:

Jdint
Jdint

app
dint

ne understanding of feedback systems

ne design of effective solutions for
ications

ne improvement of the quality of life of

citizens.
JWhat are the new challenges to progress further?
JADbility to cope with complexity
JdDomains of life and social sciences

JuUnderstanding, regulating, and even replicating
natural systems and social organizations
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What Cyber-physical systems have to do
with Cybernetics?

[ Cybernetics, "the scientific study of control and communica-
tion in the animal and the machine,” Norbert Wiener

[ "Science concerned with the study of systems of any nature
which are capable of receiving, storing and processing
information so as to use it for control,” A. N. Kolmogorov

 "The art of steersmanship': deals with all forms of behavior: stands to the real
machine - electronic, mechanical, neural, or economic — much as geometry
stands to real object in our terrestrial space; offers a method for the scientific
treatment of the system in which complexity is outstanding and too important to
be ignored.” — W. Ross Ashby

1 "A branch of mathematics dealing with problems of control, recursiveness, and
information, focuses on forms and the patterns that connect." - G. Bateson

[ "The art of interaction in dynamic networks." - Roy Ascott
[ Robotics, “the intelligent link between perception and action.” — Michael Brady

[ Cyberphysical systems are physical, biological, and engineered systems whose
operations are monitored, coordinated and controlled by a communication and
computation core - P. Antsakilis
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Outline

JAN enormous potential in the combination of powerful
analytical tools and ideas and inspiration that comes
from neurosciences

Wil show some examples of how this process can work,
reporting on few case-studies where a fruitful
multidisciplinary collaboration has led to interesting
iInsight and technological solutions

JOpen problems and discussion points






Embodied Intelligence

[ “Cognition depends on the kind of experiences that
come from having a body”
Esther Thelen

1 That the body may determine and anticipate
coghnition is not “the innocuous and obvious claim
that we need a body to reason;... The very structure
of reason itself comes from the details of our
embodiment.”

Philosophy in the flesh: The embodied mind and its
challenge to western thought, G. Lackoff, M.
Johnson, 1999

[ “In cyberphysical systems you can’t tell what
behaviour belongs to the physical, and what to the
cyber parts”, A Speaker, this morning

] CPS and EI



A Classic: Optimal Control

JOne of the central tools to translate theoretical intuitions in
precise concepts and usable tools

(1 OC is also fundamental under other regards — as it
provides a principled basis to compare the performance
of different embodiments and system designs



OC for Abstraction

Jin the embodied intelligence philosophy, a large
part of the functional capabilities of an organ
reside in its physical characteristic

AThis raises a fundamental question: what can we
learn by observing how “body A” works that is
relevant to controlling “body B”?

JWe need abstractions at a sufficiently high level,
but still transparently operational, at which natural
and artificial movement science and technology
can meet and share ideas



Inverse Optimal Control

A stereotype of locomotor trajectories
could be interpreted as the result of
application of an optimization index

2m

\
JWeights found by numerical fitting of 1m;333
. gk
experimental data P im
(JdHumans tend to adopt a g
nonholonomic behaviour, minimizing /

the bearing angle

A spiralling path results

Laumond, Berthoz et al., 2008
Mombaur, Laumond et al., 2010,



Direct Optimal Control and
Finned, Winged, Legged Creatures \/
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approach an electric light.

A
Targel
Targel
. (¢) Winged vehicle with side-
{b}. Undu.lnvdlu [anfrd}l looking sensors.
vehicle with lateral-looking

SCNSOTs.



DOC and
Finned, Winged, Legged Creatures
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DOC and
Finned, Winged, Legged Creatures

Classical Pontryagin synthesis
plainly explains logarithmic
spiral behaviours

Salaris, Bicchi et al., IJRR 2012



Body and Mind
The philosophy behind

I
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Embodied Intelligence

J“Cognition depends on the kind of experiences that
come from having a body”
Esther Thelen

dThat the body may determine and anticipate
cognition is not “the innocuous and obvious claim
that we need a body to reason;... The very structure
of reason itself comes from the details of our
embodiment.”
Philosophy in the flesh: The embodied mind and its
challenge to western thought, G. Lackoff, M.
Johnson, 1999.

Mens et Manus

1 “The modern human brain came after the hominide
hand”
Sherwood Washburn, Scientific American, 1960

[...] man is the most
intelligent of animals
because he has
hands...

Anaxagoras,
cited by Aristotle,
De partibus
animalium



Tendons







Under a pin’s head
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How can the brain cope?

— Tengue

| — Lower | P
= ll ~—Teeth, gums, and jaw

Pharynx

V-

‘ Intra-abdeminal



Taming the Complexity:
the role of Synergies

[ Central Concept: constraints
that the embodiment imposes
are not mere bounds that limit \ i ) | W 3 |
degrees of freedom N —
 Rather, make it possible for the brain to deal witrre huge

redundancy of sensory and motor apparatuses

 Ultimately, dominating factors in affecting and determining
how cognition has evolved into the admirable form we
observe on Earth

JConstraints that organize and enable
“THE Hand Embodied”

JWhat is the conceptual structure and the geometry
of such enabling constraints (aka “primitives” or
“synergies’)?




The idea behind

]
Inference and
Anticipation > cogn_itive more abstract
T sensorimotor parcimonious
priors synergies

——> fn

cue integration, Tevidence

selection, ...
: Sensorimotor
multifinger \ /
integration Ea_rly
sensorimotor
Synergies
Sensor synergies Motor synergies

early touch V \ )&early grasp taster
massively abundant

Sensors motors






Images for Hands




Images for Hands




Dynamic Constraints:
Surfaces of Iso-Strain

]
Let v Strain Energy Density
6 L T |
D= %Z Omém = Z Crmnénén N
m=1 m n=1

Consider the ISO-SED C/urves
when P varies
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Dynamic Touch

and Tactile Flow
[ ]
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Tactile Flow and CASR

Rate at which volumes within iso-SDE surfaces grow under
Increasing contact force - related to rate at which
~ contact area spreads

_____ dv _
— = div(p)dV
& =] divly)
dA ¢ ..
—=|div(p.)dA
5= divp)

“Contact Area Spread Rate” represents an integral form of
Tactile Flow (analogous to Time-To-Contact)

/T Al 221 \M\/ g
AK 231 WY




Tactile Cues: Contact Area Spread Rate

]
L CASR for softness discrimination

IEEE TRANSACTIONS ON ROBOTICS L& ALUMTOMATION

Haptic Discrimination of Softness in Teleoperation:
The Role of the Contact Area Spread Rate

Antonio Bicchi, Engo Pasquale Scilings, Danilo De Rossi

O CASR Display

] B Kinesthetic
Display
CDirect exploration

(CASR is analogous to
tlme_tO_CO ntaCt for Fig. 14. Percentage of successfull recognition of 5 different levels of

softness by direct exploration, and by remote exploration using

taCtlle 'ﬂOW the CASR haptic and the kinesthetic displays.



Constraint Equation
and Tactile Flow

30



Tactile Flow lllusions

]
[ Tactile Barber Pole

BRAIN
Tactile Pad PP RESEARCH
motor BULLETIN

Brain Besearch Bulksin 75 (&) T37-741

wwwelsevier.comylocate braimresbull

Research report
Tactile flow explains haptic counterparts of common visual illusions

Antonio Bicchi®™*, Enzo P. Scilingo®, Emiliano Ricciardi *Y, Pietro Pietrini ©

Perceived Motion Direction Relative to Real Motion Direction vs Pad
Line Direction Relativg‘m'keal Motion Direction

Actual motion

v

Perceived motion

-90° —~
/ 30°  45°  B0°  75°  90%°° 105° 120° 135° 150°

I Experimental Results ------- ldeal Results (perpendicular to pad lines)




Cerebral Correlates of Tactile Flow

Cercbral Cortex
doi:10.1093/cercor/bhm0 18

The Eﬁect Of Vi s ua I E xpe r ie n c e o n th e Emiliano Ricciardi™*?, Nicola Vanello*?, Lorenzo Sani', Claudio

Gentili**, Enzo Pasquale Scnlmgcr‘. Luigi Landini*?, Mario

Deve I op m ent of F un ctio na I Arc hitectu re Guazzelli*, Antonio Bicchi®, James V. Haxby® and Pietro

Pietrini’
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Synergies in the Hand Motor System

JExtensive neuroscientific evidence for the existence of
sensorimotor synergies and constraints
Babinski (1914!), Bernstein, Bizzi, Arbib, Jeannerod, Wolpert,
Flanagan, Soechting, Sperry, ...

 Quantitative work on hand postural synergies dates back
a decade only



Postural Synergies v

 Santello et al. (1998) investigated ﬂf ‘
the hypothesis that “learning to W

Avg poslure PC1 max

select appropriate grasps is applied ﬂ‘? 44
to a series of inner representations of T
Increasing complexity, which varies

with experience and degree of Santello, Flanders, Soechting

J. Neuroscience, 1998

accuracy required.”

[ 5 subjects were asked to shape their hands in order to mime grasps
for a large set (57) of familiar objects;

1 Joint values were recorded with a CyberGlove;

dPrincipal Components Analysis (PCA) of these data revealed that
the first two Principal Components or postural synergies account for
~ 84% of the variance, first three ~ 90% ;

[ PCs (eigenvectors S: of the Covariance Matrix) can be used to
define a basis for a subspace of the joint space.



The Shape of Synergies

Postural synergies (aka primitives, eigengrasp
components) are the eigenvectors of the join

First synergies contain most of hand posture in
Higher-order synergies used for fine adjustmer.s

llllll

''''''

PCs can be collected in a synergy matrix: S = | S1:S52:53:--- ;S.n

Sl (1-st synergy) 52 (2-nd synergy) 53 (3-rd synergy)




Model of a Hand with “s” synergies

S=[S1 18181 18,]

H H """""" s-th synergy

information on 2-nd synergy
hand posture | 1-St synergy

Straightforward Kinematic interpretation:
1 Joint configurations must belong to s-dimensional manifold
L S

q=9q(0), c R

1 Hand velocities belong to tangent bundle
. . nxs
q — S(q)Ja S() c R

[ Fingers move according to Hand jacobian

¢ =Jg=JS0



Grasp Force Distribution & Optimization

-1
 External load (wrench) w
[ Grasp matrix G (fat) R — Gp;
 Contact forces p

N

Friction Constraints 7.1 (Pi) = ;|| pill — p?ni < ()

] Given w whichp? p = Gliw —+ AX;

d G (any) right inverse of 3
d A : abasis of internal forces subspace

By changing X, squeezing forces are changed: if for every wit is
possible to find x such that friction constraints are verified, than
one has FcC

 This only holds for fingertip grasping with a large number of
synergies!



Controllabllity of Grasping with Synergies

T e
] Hand joint torques 7

_ 14
] Hand Jacobian J T =J"p,
QT T
 Hand with synergies o=5"J"p
S'JT € R**P
s<p

Not controllable in general - can not apply arbitrary
contact forcesp!



Grasping objects with synergies

[ First synergy only

(@)

e

o1 =10

74

(b) o1 =0.35

4 Grasping an object

(e)

P

g =10

y:

(f) o1 =0.35

(g) o1 =0.70




Soft Synergies

s
e Internal Forces: P € ker(G)

* Not all internal forces are active (controllable) acting on
the joints

TH: The set of contact forces which can be actively
controlled is a linear subspace of keT(G)

0 Ax = KJSAc — KGT Au
PLV =

[A _KJS KGT] ( Ao
Au

) ) 0
Feldman’s Equilibrium
Point Hypothesis

_ R
0 P, = (I GKG)KJS@\%?

or pa, — Eﬂ'y

hence




Soft Synergies

[ Rigid Synergy = Reference Hand

>

(e)

a =10

A

(f) o1 =035

(h) o1 =1.0

 Soft Synergy = Equilibrium Hand

.

(1)

01:0

4

G o1 =0.35

&) oy =0.70

0 o =1.0




Pinch Grasping with 3 soft Synergies

]
 Cherry







Power Grasping with 3 soft Synergies

5|
d Ashtray







Predictions

d Variation of grasp quality measure with # synergies engaged in grasp
(J Dimension of Internal Force subspace: 27

d Grasp is not always force-closure with the 1-st synergy only

 Limited effect of contact stiffness variation

||f||2 [N] 3_5:_ ...... . ....... S R A .......
3.03 320 N e & S

® Ay 10 (nom)

e @ g 05

e kS0
o ko100
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One Synergy, one Motor!




THE Third Hand




The dual point of view:
Synergies for Optimal Observers

Glove-based HPR Systems:
Mass market (entertainment)

Few, low cost, low accuracy sensors
- Many joints




The dual point of view:
Synergies for Optimal Observers

 Humans do not have homogeneous distribution of
receptors...

Edin and Abbs, 1991 Bianchi Salaris B., 2011



The dual point of view:
Synergies for Optimal Hand Observers

]
[ Synergies provide a priori information for
1 optimal Bayesian inference

1 optimal sensor placement

m
v

Bianchi Salaris B., 2011

Prm
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Sensorimotor Synergies

Inference and

Anticipation cognitive more abstract
sensorimotor parcimonious
priors synergies
cue integration, evidence
selection, ...
: Sensorimotor
cue processing primitives
multifinger
integration Ea.”y
sensorimotor
Synergies .
Sensor synergies Motor synergies

early toucdk JKearly grasp faster
. massively abundant

Sensors motors



Architectures for Feedforward (Learning)
and Feedback (Reflex) co-organization

Continuous

INPUT SET
fo,B,y,...}

OUTPUT SET
a,8,C,...}

Computer
(?)



Networked Embedded Control Systems

Compressor | OUTPUT

10 ~>| SET

a, B, ¢ L

INPUT SET | Control
fo,B,y,...}

Physical
Plant(s)
(continuous)

W/ 2 \/@;/
= [T [ Job @
@] (&)
(] c
v LLJ
a /
Channel Rl

Channel
@_010_“_101_ -010----101-%




Networked Control Systems

7 Ece)motetation Supervision
Unitp « & Diagnostic  Industrial
— Ethernet

:1:9@
~

(7

i

Constraints: Limited bandwidth, variable transmission intervals,
variable delays, packet dropouts, constrained
access (protocol)




Control over Industrial Ethernet Local Feedback Control
A Siemens ProfiNet Case Sarmple Time: 1 ms

Networked Feedback Control

Sample Time: 1 ms
Network induced delay: 10 ms on average

Sending:
1 control action per packet
1 sensor reading per packet

YELLOW

{optional )

Furuta pendulum controlled over an Industrial Ethernet:

IRT (Isochronous Real-Time) cycles times of less than 1ms



Packet-switching communication

I
Many networks organize data transmission in packets

Ethernet
{{ MAC Header (14 bytes) } {. M ] [‘Clicytqu

Ethernet type Il frame (64 bytes)

- 38 bytes of overhead (header + interframe separation)
- 84 bytes of minimum packet size

mp Padding of payload with useless information

How can we exploit the large payload?



ldeas from another system

CNS loops ~100ms
PNS loops ~10ms




PREDICTIVE FEED-FORWARD SENSORY CONTROL DURING
GRASPING AND MANIPULATION IN MAN

[] RoLAND S. JoHanssoN and BENONI B. EDIN
Department of Physiology, University of Umea, $-091 87 Umea, Sweden

Exp. Brain Res., 1984
ABSTRACT

During dexterous manipulation the basal relationships expressed in the employed

fundamental muscle synergies are tuned precisely not only to the manipulative intent,

but also to the physical properties of the object. Recent findings indicate that the

sensorimotor_mechanisms involved depend largely on prediclive rather than servo-|
|n::unlrul I'I"IEL‘h::I.llihlIl:'iil The CNS monitors specific, more-or-less expected, peripheral

sensory events and use these to directly apply control signals that are appropriate for

the current task and its phase. On a fast time scale, discrete mechanical events encoded

in populations of somatosensory afferents trigger compensatory actions to task pertur-

bations, and allow task progress to be monitored for timing the release of motor

commands related to the serial manipulative phases. This type of predictive feed-

forward sensory control is termed |‘sensory discrete-event driven control’| On an

extended time scale, previous experience with the object at hand or similar objects is

used to adjust the motor commands parametrically in advance of the movement, e.g. for

the object’s weight and surlace friction. Through vision, for instance, common objects

can be identified in terms of the grip and lifting forces necessary for a successful lift.

This ability to directly parameterize the default motor commands is termed “anficipa-
tory parameter control’.




Two-level architecture

From one-level
architecture ...

Y
> Plant
Networ
u Remote )
Controller |

... to two-level
architecture

Embedded .

Controller

_______________________________

Remote

Controller [

Adoption of: model-based predictive schemes
feedforward control actions



A possible answer

JControl packets may contain
collections of “motion primitives”
steering the system to and from a
variety of states

ASystem would switch among
primitives depending on local
feedback and strategy



Networked control system scheme

SN
<

l’Protocol

h
l Network >
X.

L




Networked control system scheme

—

Packet Filler

Remote Controller




Networked control system scheme

R

]
Buffer Synchronizer
(Embedded Controller)




Network and protocol model (1)

/TL \:l,’—l"rotocol
< ? \lr Network

Network Assumptions

7-'7?'1.3- 7-( Bounded MATI

MATI: Maximum Allowable Transfer Interval
1,,, 1. Bounded MAD MAD: Maximum Allowable Delay

mTIl: Minimum Transfer Interval
Ems €c¢ Bounded mTI



Network and protocol model (1)

EEE 3 - 5 e
- 1 5,

f—
’TL l Protocol
< f o Network

State partitioned in £ nodes: no instantaneous full reset of the network induced
error e=2r —x
Protocol Assumptions

UGES property:
There exist a function Wo : N X R" — R

and constants . a@.¢ > 0 po € [0.1) Round Robin (RR) and
such that: . ' '
a M < IV()(% e) <a \e\ Maximum-Error-First
o | | Try-Once-Discard
Wo(e+ 1, h(i.e)) < po Wol(i,e) (MEF-TOD) are UGES
AL ‘
dWo ie)| <e

e




Remote controller

]
v -
— 2 MODEL X
AN
Packet Filler K

Remote Controller

- Receive time-stamped measurements, produce time-stamped control
over a fixed time horizon (feedforward)

- Model-based prediction

Model Assumptions

Sector-bounded model inaccuracy:

P

flz,u) — f(z,u)| < /\ff (lz] + |ul)

/\ff is a constant defined for everyx € Br_andu € Bg, withR,, R, > 0



Plant and embedded controller

ua v

G (i)

l—‘ il I%IIIIIIIIII
Buffer Synchronizer

T (Embedded Controller)

- Control packets are stored in a local buffer

- An embedded controller scans the buffer and chooses the control value
to apply at each instant accordingly to the time-stamp

Plant and closed-loop Assumptions

- k guarantees the GES of /' ——

- Regularity of / and x measured
in terms of two local Lipschitz

constants Ay, A, defined on
B.RI'! B.Ru

There exist a functionV : R" — R>g
and constants a, o, e, d > 0

: 2 — 2
such that alz]” <V(r) <alz|

'V :
(@) f (@, 5(2) < —alal’
Ox R

AV

= (@)

L Oa -



Main results

9|
Local Exponential Stability of the NCS is ensured if

— _ * * é l ( 17\.[,-}’2 _'_ (LLL )
Tm € [‘{377'1~ T )s T, — — 111
M~y 4 arpgL

m m L

with

T 4T, + T
_\.;l . |_ | ‘

AN : ~ d :':"_T
} l J\_[ — (.N}\ff (J. + Ah) '_) —_ : \:- a/\r/\’
- (\/E\_TA”:(l )+ VNAs + (\/N 14N - 1) /\f/\,;)
ar,
Ro=R Ry=MMR R>0

- An explicit estimate of radius of attraction is provided as a function of R > 0

e ], is a bound on the divergence rate of the system between two error
updates. The larger I, the smaller ther,, : need for frequent measurement
transmissions

e N binds together MATI, MAD and mTI: trade-off among them



Main results
e

The radiusR of the basin of attraction is a function of the radius of

the ball B g of definition of the local constants Ay, A, and/\ff

For enlarging i we could have constant or even collapsing R

For semiglobal results we need a further assumption on the
dependency of constants on R

Semiglobal Exponential Stability is ensured if 3o € [0,1)
Ar(R)Ax(R)

RO’

lim < 00




Example

Linearized Ch-47 Tandem Rotor helicopter
I

- Static output feedback
- 2-links network (measurement side)
- RR protocol

- Perfect model, no delays (same as in literature)

MATI evaluation

Estimate in literature: 7 = 2.81 107* s

Our estimate: 7 =75 =558 107" s 20times larger

m

*

Exact value (single command): 75,4 = 1.13 1077 s

Exact value (mult. commands): 77, = 1.3105 s 1160 times larger!



Control over Industrial Ethernet: 1 ocal Feafack Kontrof
A Siemens ProfiNet Case Sample Time: 1ms

Networked Feedback Control

Sample Time: 1 ms
Network induced delay: 10 ms on average

| - ; = Sending:
il . 1 control action per packet
44 1 sensor reading per packet
BT Class /1 YELLOW

5 ' Pio| P06  |Prio| Prio| .| Prio|
o 7 5 0
 GREEN (mandstory) {optional)

Packet-Based Control over the Industrial Packet Based Control
Ethernet allows to move criticaksystem Sample Time: 1 ms

control processes from red (RT) to green Network induced delay: 20 ms on average
(packet-switching) zone in ProfiNet Sending:

40 control actions per packet

10 sensor readings per packet

(joint work with Siemens Corp.Res..)




PREDICTIVE FEED-FORWARD SENSORY CONTROL DURING
GRASPING AND MANIPULATION IN MAN

RoLAND S. JoHanssoN and BENONI B. EDIN
Department of Physiology, University of Umea, $-091 87 Umea, Sweden

Exp. Brain Res., 1984
ABSTRACT

During dexterous manipulation the basal relationships expressed in the employed

fundamental muscle synergies are tuned precisely not only to the manipulative intent,

but also to the physical properties of the object. Recent findings indicate that the

sensorimotor_mechanisms involved depend largely on prediclive rather than servo-|
|n::unlrul I'I"IEL‘h::I.llihlIl:'iil The CNS monitors specific, more-or-less expected, peripheral

sensory events and use these to directly apply control signals that are appropriate for

the current task and its phase. On a fast time scale, discrete mechanical events encoded

in populations of somatosensory afferents trigger compensatory actions to task pertur-

bations, and allow task progress to be monitored for timing the release of motor

commands related to the serial manipulative phases. This type of predictive feed-

forward sensory control is termed |‘sensory discrete-event driven control’| On an

extended time scale, previous experience with the object at hand or similar objects is

used to adjust the motor commands parametrically in advance of the movement, e.g. for

the object’s weight and surlace friction. Through vision, for instance, common objects

can be identified in terms of the grip and lifting forces necessary for a successful lift.

This ability to directly parameterize the default motor commands is termed “anficipa-
tory parameter control’.




Open Issues

System would switch among OL/CL
plans depending on local
feedback and strategy

JHow do you pre-compute and
store feedback control ?

..

. How can control make good use
of big data and the cloud?
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