Transportation CPS Safety Challenges

Prof. Phil Koopman koopman@cmu.edu

And teams in ECE and NREC

TARGET GVW: 8,500 kg TARGET SPEED: 80 km/hr Approved for Public Release. TACOM Case #20247 Date: 07 OCT 2009

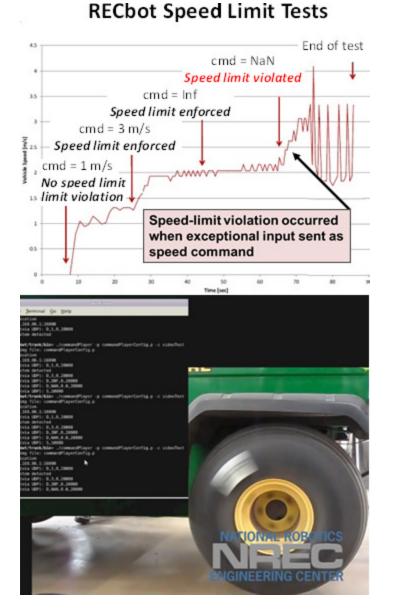
Example: RunTime Safety Monitor

- Dedicated, trusted hardware to monitor behaviors
 - Invariants to describe "safe" behaviors
 - For example: vehicle speed < speed limit
 - State machines to account for system operating modes
 - Different invariants are active in different modes (e.g., "stop" vs. "run")
 - Emergency shutdown sequencing if any invariant is false

Approved for Public Release. TACOM Case #20247 Date: 07 OCT 2009

Also, Safety Shutdown Box for CHIMP

- CMU Highly Intelligent Mobile Platform
- DARPA Robotics Challenge Trials Dec. 2013



Stress Testing of Autonomous Systems

- Stress testing robots & autonomous vehicles
 - Web Search: "ASTAA NREC"

Distribution Statement A - Approved for public release; distribution is unlimited. NAVAIR Public Affairs Office tracking number 2013-74, NREC internal case number STAA-2012-10-23

Coming Soon To A Road Near You

Traditional Safety Approaches

- Elevators
 - Building codes describe required mechanisms
 - Electromechanical safeties (avoid trusting SW)
- Rail systems
 - Dual redundant hardware protection systems
 - Rigorously developed software EN-50126/8/9
 - Customers typically require these standards
 - "Safety net" architecture minimizes critical SW
 - Fail-stop approach shut down if unsafe

Traditional Safety Approaches – 2

- Aviation
 - Do-178 and other FAA standards
 - Federal certifying agency (FAA)
 - Testing + examination of how system is designed
 - Fail operational; significant redundancy
- Automotive
 - NHTSA does not proactively certify safety
 - FMVSS don't really address SW safety
 - MISRA Guidelines → ISO 26262 safety standard
 - Some redundancy; tough cost constraints
 - Steering & brakes must fail (partially) operational

Why HW Safety Is Difficult

- "Safe" might be 1e-9/hr catastrophic failures
 - (It is easy to argue cars must be safer than that)
 - Single fatalities at perhaps 1e-7/hr (probably less)
 - Simplex hardware tends to fail at 1e-5 to 1e-6/hr
 - Cosmic rays result in bit flips (yes, really!)
 - Other things go wrong at about this rate
 - Thus, need **redundancy** to be safe
 - No single point failure end-to-end in the system
 - Takes some effort to get redundant components to properly synch.
- Infeasible to test to 1e-9/hr
 - Need testing time 3x-10x longer than failure rate

Why SW Safety Is Difficult

- Testing Software does not make it safe
 - See previous slide about testing duration
 - How do you know all SW corner cases tested?
 - Proving correctness is not enough for safety either
 - How do you know your requirements are correct?
 - Have you proven correctness under all fault conditions?
- Software safety requires process + testing
 - Follow standards (e.g., ISO 26262)
 - List of practices to follow based on criticality of SW
 - Need to ensure development process quality is there
 - Testing checks you really did it right
 - Testing is not "debugging" test for absence of bugs
 - Generally, adaptive/robot software doesn't fit the mold for existing SW safety

Autonomy Validation Challenges

- Specifying safety
 - Need to artfully select safety requirements as less than 100% of full system functionality
 - Need a realistic role for human operator
- Unconstrained environments
 - Uncontrolled, unpredictable urban roadways
 - Can inductive-based algorithms cover enough of the corner cases to be good enough?
- Trusting validation
 - How do you know your own system is really safe?
 - How do you know someone else's system is really safe when you cooperating with it?

