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I. INTRODUCTION

There is a trend in transportation applications such
as automobiles and aerospace vehicles towards integrat-
ing control functions in a common (share) computing
platform rather than having multiple computers each
handling a specialized function. Thus, instead of having
each subsystem having its own dedicated processors, we
have a set of processors that can be used for whichever
function requires their services. This approach allows
for pooling of resources and adjustment of resource
allocation based on the changing urgency and extent
of computational resource requirements for the various
vehicle control tasks. It can take advantage of the in-
creased processing power available in today’s processors.
Autonomy of the control system requires extensive fault-
tolerance; fault-tolerance requires massive redundancy
which can be expensive, both to provision and to run.

In this position paper, we argue that conventional
fault-tolerance in ultra-reliable applications like ground
and air/space vehicles is usually quite wasteful and that it
is possible, using dynamically adjustable fault-tolerance,
to provide the same level of safety while dramatically
reducing the workload stress imposed on the computers.
Since workload is correlated with failure rates, this has
the potential to reduce the system failure rate as well.

II. BASICS OF ADAPTIVE FAULT-TOLERANCE

The extent of fault-tolerance provided to any task
should be related to the requirements of the controlled
system at that point. Much, if not most, of the time,
the controlled plant is deep within its allowed state
space, and can safely tolerate certain types of errors
in the control computer. During such times, the level
of fault-tolerance can be reduced. Such a reduction
allows the computational resources to be used for other
tasks or for the workload to be reduced. The former
can improve the quality of service provided (including

0Supported in part by the National Science Foundation under grants
CNS-0930813, 0931035, 1329702, and 1329831.

service to less essential tasks); the latter reduces the
stress on the computational subsystem, thereby reducing
its failure rate. Further, it may be possible in certain
cases to be more relaxed about letting the computer miss
a few deadlines, which again reduces the computational
workload.

Some prior work exists on adaptive fault-tolerance;
see, for example, [1], [3]–[5].

The state-space can be divided into three parts as
described and illustrated in [2]: S1 in which the system
can tolerate any wrong actuator output, S2 requiring
either a correct output or no output at all (fail-zero), and
S3, requiring full fault-tolerance (where a correct output
is essential). S1 is so deep within the allowed state-space
that it is possible for the computer to cause the actuators
to be set in the worst-case wrong configuration without
the vehicle leaving the safe state-space. Obviously, a suf-
ficiently long succession of incorrect outputs can cause
catastrophic failure; this subdivision only applies to the
output associated with a single control-task iteration. S1

requires no fault-tolerance: a single copy of the task
can be run and its output sent to the actuator(s). S2

is somewhat closer to the edge of the allowed state-
space; the fail-zero property is typically generated by
having a duplex of processors running the control task in
parallel and requiring unanimity to produce the output. If
no output is forthcoming (because the processor outputs
disagree), the actuator(s) can be left in their previous
configuration. Finally, S3 is so close to the edge of the
allowed state-space that even a single incorrect iteration
can render the vehicle unsafe; in such a case, forward
error-masking techniques such as triplexes with voting
can be used.

III. EXAMPLES

A. Anti-Lock Braking System (ABS)

Suppose a car is braking to avoid hitting an obstacle a
given distance away. Based on its current state (velocity,
road conditions, and distance to the obstacle), it will be
in one of these subspaces. If it is far from the obstacle,



Vehicle is 55 m from obstacle
Fig. 1: Subspaces for Vehicle Braking

its speed is low, and the road is dry, then no failure of
the ABS system over one of its iterations can harm the
vehicle; in such a case, it is sufficient to use just one copy
and no fault-tolerance. If, on the other hand, the car is
on a slippery surface, is operating at a relatively high
speed and is not far from the obstacle it needs to avoid,
then a malfunction for even one iteration is sufficient to
place the vehicle in danger; in such a case, full forward
error-masking must be allowed for. In between these two
extremes, simple error detection (but no correction) is
sufficient.

Figure 1 shows some simulation results. The vehicle
is initially traveling in a straight line when an obstacle
is detected a given distance away. Based on the initial
wheel and vehicle speeds (the two are not always equal
due to slip) and the condition of the road surface (and
thus the friction that can be exploited in braking), the
three subspaces are shown for two frictional coefficients:
µ = 0.7 and µ = 0.8. As µ increases, i.e., the road
surface becomes more benign, a greater fraction of
the space is in S1. In this preliminary example, we
have assumed uniform road friction for all four tires;
similar work can be done for a more complex road-
car interaction. Likewise, we have not considered the

interaction of steering with braking which can be studied
along similar lines.

B. Sense-and-Avoid in Aircraft (SAA)

SAA is another example application that can use adap-
tive fault-tolerance. SAA involves three steps: (a) Predict
(sense) a loss-of-separation condition, (2) warn the flight
crew (ground controllers if unmanned; pilots if manned)
and potentially compute a maneuver to prevent loss-
of-separation and (3) execute an avoidance maneuver
to prevent collision. Once again, based on the current
state of the aircraft and the one it is trying to avoid
hitting, the SAA application will be in one of these three
subspaces. Initially, when the separation is small, high
fault-tolerance will be required; as avoidance maneuvers
are carried out and the separation increases, less (or
no) fault-tolerance will be sufficient for the collision-
avoidance task. (Note that each task can have its own
distinct fault-tolerance requirement; it is entirely possible
for the collision-avoidance task to be run with low fault-
tolerance while having to run another task involving, say,
the stability of the aircraft, at high fault-tolerance.)

IV. IMPLEMENTATION

We are developing a system which accepts as input the
state equations of the controlled plant, a model of the
environment, and limits on the actuator configurations
and force, and carries out a simulation to output the three
subspaces. These subspaces will be stored as lookup
tables that the controller operating system can use to
determine the appropriate level of fault-tolerance. An
important issue is to be able to store these lookup
tables compactly. How to do this reliably is the focus
of current work. Also, note that when the vehicle in S1

or S2, the system has the option of dropping an iteration
altogether if it is currently under a heavy workload; this
is the approach shown in [6] to significantly improve the
schedulability of task sets under heavy loading.
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