Zero-power Dynamic Signature for Trust Verification of Passive Sensors and Tags Pls: Shantanu Chakrabartty (Washington University in St. Louis), Jian Ren (Michigan State University)

The objective of this research is to investigate dynamic hardware-software authentication techniques on passive assets (tags and IoT sensors) based on zero-power timing and synchronization circuits.

Passive assets have very limited computational capabilities which obviates the use of high-performance encryption techniques, use of strong hash functions and embedding of complex pseudo-random number generators. Also, the need for fast and real-time authentication obviates the use of multi-level authentication and challenge-response protocols in these assets.

Approach

Enterprise-grade SecureID type authentication of passive devices based on a continuously running and a synchronized zero-power timer.

 Loss of synchronization between different clocks indication of counterfeiting, tampering or data theft. Verification tokens synchronously generated at the server and when the passive device is accessed.

MSU Results here

Graphics/text as appropriate

Summary of Progress

- Zero power timers based on FN Tunneling synchronization accuracy better than 60dB over 100 hours.
- Duration: greater than 3 years.
- One intellectual property, One Journal paper.
- Two graduate students.

Interested in meeting the PIs? Attach post-it note below!

National Science Foundation WHERE DISCOVERIES BEGIN

NSF Secure and Trustworthy Cyberspace Inaugural Principal Investigator Meeting Nov. 27 - 29th 2012 National Harbor, MD

