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ABSTRACT

In the following we describe practical experiences on verify-
ing a steering controller specification. The hybrid automa-
ton implements a PI control rule and considers the vehicle’s
velocity as input from the environment. By combining the
tools Stabhyli and SoapBox, we establish several safety
and liveness properties for the steering controller, including
convergence towards an equilibrium.
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1. INTRODUCTION
In the following we describe practical experiences on estab-

lishing safety and liveness properties for a steering controller
(SC). The steering controller has been specified as part of a
case study [8, 4] on designing loosely coupled systems, where
we examined an advanced driver assistance system (ADAS)
controller. Our ADAS controller is made up of two loosely
coupled subcomponents, a velocity controller and the SC.
Only the latter will be considered in the sequel. Whereas
in [8] the focus was on modeling the loosely coupled system
within a design framework, we concentrate in this report on
the verification steps and in particular on the techniques nec-
essary to establish the properties with our tools Stabhyli

and SoapBox [6]. Also we analyze only the SC here. There-
fore we consider the SC as hybrid automaton with an input,
that is the velocity of the vehicle. We give an overview on
SC and the examined properties in Sect. 2. In Sect. 3 and
Sect. 4 we then briefly introduce Stabhyli and SoapBox,
the tools we used to establish the properties. Finally, in
Sect. 5, we describe the actual process of establishing the
properties, that is manual as well as (partially) automatized
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Figure 1: Steering Controller

transformations of the model and proof steps of the verifi-
cation process.

2. STEERING CONTROLLER EXAMPLE
The steering controller can be thought of as one component

within a composed more complex controller. SC is in charge
of steering: it has the objective to bring the car to the cen-
ter of its lane and then keep it there. The speed velcur of
the car is an input or uncontrolled disturbance for steering.
The current distance distcur of the car with respect to the
center of the lane evolves with ˙distcur = velcur · sin(βori). SC

determines the change of the car’s orientation ˙βori as illus-
trated in Fig.1. Basically, SC performs steering control in a
PI-like manner exploiting the distance as an integrator. It
distinguishes three major operation modes Left, Right and
Keep. In the latter the car is quite close to the mid of the
lane, in modes Left and Right the car is further away from
the mid. Both modes, Left and Right, are split up into three
modes for distances classified as either close, mid or far, and
parameters are tweaked for the respective distance category.

In [8, 4] we report on establishing that

(p1) SC converges to (βori,distcur)= (0,0),

(p2) G (distcur ∈ [−10, 10] ∧ βori ∈ [−5◦, 5◦]), and

(p3) G ( ˙βori ∈ [−0.3, 0.3]).



These properties are interface relevant properties of the SC

component within our framework for library components.
Before we describe how we established these properties, we
briefly introduce the tools applied to establish them.

3. STABHYLI
In this section we briefly describe the tool Stabhyli [9].

Stabhyli can be used to obtain Lyapunov functions, that
certify stability for hybrid systems. It handles non-linear
systems whose behavior is expressible in forms of polynomi-
als. Stabhyli can be used to obtain a single common Lya-
punov function, a piecewise Lyapunov function as well as
to perform the (de-)compositional proof schemes presented
in [11, 3]. These features are fully automatized and com-
bined with pre- and postprocessing steps that simplify the
design and counteract numerical problems. Furthermore, in
case stability cannot be proven, Stabhyli returns a hint to
the user.
In the sequel we briefly sketch the theoretical basis of Stab-

hyli and introduce some fundamental notions. A hybrid au-
tomaton is defined as follows

Definition 1. A Hybrid Automaton is a quintuple

H = (V,M, R
dscr

, R
cnt
,Θinv

, ϕ
init) where

• V is a finite set of variables and S = R
|V| is the corre-

sponding continuous state space,
• M is a finite set of modes,
• Rdscr is a finite set of transitions (m1,G,U ,m2) where

– m1,m2 ∈ M are the source and target mode of the
transition, respectively,

– G ⊆ S is a guard which restricts the valuations
of the variables for which this transition can be
taken,

– U : S → S is the update function which specifies
discrete changes of variable valuations,

• Rcnt : M → [S → P(S)] is the flow function which
assigns a flow to every mode. A flow f ⊆ S → P(S) in
turn assigns a closed subset of S to each x ∈ S, which
can be seen as the right hand side of a differential
inclusion ẋ ∈ f(x),

• Θinv : M → S is the invariant function which assigns
a closed subset of the continuous state space to each
mode m ∈ M, and therefore restricts valuations of the
variables for which this mode can be active, and

• ϕinit ⊆ M× S is a set of initial states.
A trajectory of H is an infinite solution in form of a function
(x(t),m(t)) over time where x(·) describes the evolution of
the continuous variables and m(·) the corresponding evolu-
tion of the modes.

Intuitively, stability is a property expressing that all tra-
jectories of the system eventually reach an equilibrium point
of the sub-state space and stay in that point forever given
the absence of errors. For technical reasons the equilibrium
point is usually assumed to be the origin of the continu-
ous state space, i. e. 0. This is not a restriction, since a
system can always be shifted such that the equilibrium is
0 via a coordinate transformation. In the sequel, we focus
on asymptotic stability which does not require the equilib-
rium point to be reached in finite time but only requires
every trajectory to “continuously approach” it (in contrast
to exponential stability where additionally the existence of
an exponential rate of convergence is required).

Definition 2. Global Asymptotic Stability with Re-
spect to a Subset of Variables [10]. Let H = (V,M,
Rdscr, Rcnt,Θinv) be a hybrid automaton, and let V ′ ⊆ V be
the set of variables that are required to converge to the equi-
librium point 0. A continuous-time dynamic system H is
called globally stable (GS) with respect to V ′ if for all func-
tions x↓V′(·),

∀ǫ>0 : ∃δ>0 : ∀t ≥ 0 : ||x(0)||<δ ⇒ ||x↓V′(t)||<ǫ.

H is called globally attractive (GA) with respect to V ′ if for
all functions x↓V′(·),

lim
t→∞

x↓V′(t) = 0, i.e.,∀ǫ>0 : ∃t0≥0 : ∀t>t0 : ||x↓V′(t)||<ǫ,

where 0 is the origin of R|V′|. If a system is both globally
stable with respect to V ′ and globally attractive with respect
to V ′, then it is called globally asymptotically stable (GAS)
with respect to V ′.

In the following, we denote with x↓V′ ∈ R
|V′| the sub-vector

of vector x ∈ R
|V| that represents the according valuation of

V ′ ⊆ V.

Theorem 1. Discontinuous Lyapunov Functions for
a subset of variables [10]. LetH = (V,M, Rdscr, Rcnt,Θinv)
be a hybrid automaton and let V ′ ⊆ V be the set of vari-
ables that are required to converge. If for each m ∈ M,
there exists a set of variables Vm with V ′ ⊆ Vm ⊆ V and a
continuously differentiable function Vm : S → R such that

1. for each m ∈ M, there exist two class K∞ functions α
and β such that

∀x ∈ Θinv(m) : α(||x↓Vm
||) � Vm(x) � β(||x↓Vm

||),

2. for each m ∈ M, there exists a class K∞ function γ
such that

∀x ∈ Θinv(m) : V̇m(x) � −γ(||x↓Vm
||)

for each V̇m(x) ∈
{〈

dVm(x)
dx

∣

∣

∣
f(x)

〉
∣

∣

∣
f(x) ∈ Rcnt(m)

}

,

3. for each (m1,G,U ,m2) ∈ Rdscr,

∀x ∈ G : Vm2
(U(x)) � Vm1

(x),

then H is globally asymptotically stable with respect to V ′

and Vm is called a Local Lyapunov Function (LLF) of m.

In Theorem 1,
〈

dV(x)
dx

∣

∣

∣
f(x)

〉

denotes the inner product be-

tween the gradient of a Lyapunov function V and a flow
function f(x).
Stabhyli now generates constraint systems using the so

called sums-of-squares method [12] and the S-Procedure [2]
to generate linear matrix inequalities which can then be
solved by a semi-definite program (SDP). To do this the
numerical solver CSDP [1] is in charge. If such a constraint
system is feasible then each solution represents a valid Lya-
punov function.

4. SOAPBOX
This section briefly describes SoapBox, a tool for reach-

ability analysis of hybrid systems, which is implemented in
Matlab. SoapBox can handle hybrid systems with con-
tinuous dynamics described by linear differential inclusions
and arbitrary linear maps for discrete updates. The invari-
ants, guards, and sets of reachable states are given as con-
vex polyhedra. The reachability algorithm of SoapBox is



based on a novel representation class for convex polyhedra,
the symbolic orthogonal projections (sops), on which vari-
ous geometric operations, including convex hulls, Minkowski
sums, linear maps, and intersections, can be performed effi-
ciently and exactly. The capability to represent intersections
of convex polyhedra exactly is superior to support function-
based approaches like the LGG-algorithm (Le Guernic and
Girard [7]), which is implemented in SpaceEx [5].

4.1 Symbolic Orthogonal Projections
A symbolic orthogonal projection (sop) P = P(A,L,a) en-

codes the orthogonal projection of a higher dimensional H-
polyhedron P((A L),a) =

{(

x

z

)
∣

∣Ax+ Lz ≤ a
}

onto the vec-
tor space of dimension d:

P(A,L,a) =
{

x ∈ K
d
∣

∣

∣
∃z ∈ K

k : Ax+ Lz ≤ a
}

.

Obviously, the following properties hold for sops: a sop
P(A,L,a) is empty if and only if its preimage P((A L),a)
is empty; any H-polyhedron P = P(A,a) ∈ K

d can be rep-
resented by the sop P(A,∅,a), where ∅ denotes the empty
matrix; and the support function hP(n) is given by the op-
timal value of the linear program

maximize nTx subject to Ax+ Lz ≤ a.

The representation of polyhedra as orthogonal projections
of higher dimensional polyhedra provides the freedom to
introduce existentially quantified variables. For example,
the Minkowski sum of two polyhedra P1 = P(A1,a1) and
P2 = P(A2,a2) is defined as the set

{z|∃x,y : A1x ≤ a1, A2y ≤ a2, z = x+ y}.

Now, the Minkowski sum can be rewritten to
{

z
∣

∣∃y′ : A1(z+ y′) ≤ a1,−A2y
′ ≤ a2

}

= P

((

A1

O

)

,

(

A1

−A2

)

,

(

a1

a2

))

.

By introduction of certain existentially quantified variables
we obtain exact and efficient sop-based representations of
the closed convex hulls, Minkowski sums, intersections and
arbitrary linear transformations of polyhedra. In fact, most
of these operations are realized as block matrices over the
original representation matrices.

Overapproximation of Sops

Due to the introduction of additional variables the size of the
representation matrices of the assembled sops grows mono-
tonically. Hence, the evaluation of assembled sops by means
of linear programming gets increasingly harder. The over-
approximation of a sop by an H-polyhedron with a fixed
representation matrix (template polyhedron) helps to shrink
the size but might induce a substantial loss of the facial
structure of the sop. To recover at least some of the fa-
cial structure we use a post-processing technique called ray
shooting: Let P = P(A,L,a) be a non-empty sop in K

d

which contains the origin 0 as a relative interior point and
r be the direction of some ray λr in K

d, λ ≥ 0. If P is
neither unbounded nor flat in direction r, i. e. a maximal
λ0 > 0 with λ0r ∈ P exists, then there is a linear program
which provides a normal vector n of a supporting half-space
H = H(n, 1) of P containing the boundary point λ0r.

4.2 Reachability Analysis Using Sops
Internally, SoapBox uses symbolic states to represent the

reachable sets of the hybrid system. A symbolic state is a
pair (P,m) of a polyhedron P ⊆ S and a mode m ∈ M. The
reachable states from a symbolic state (P,m) are exactly
those states which are reached by a trajectory emanating
from (P,m).
Given a hybrid automaton H and the sets Init, Safe, and

Unsafe as disjunction of finitely many symbolic states, the
goal of SoapBox is to compute all reachable states from the
initial states in Init until the trajectory enters Safe, touches
Unsafe, or leaves the mode invariant Θinv(m).
Let (P,m) be a symbolic state. Then the reachable states

of (P,m) within the mode m are described by the linear
system

ẋ(t) = Ax(t) +E ∈ R
cnt, x(0) ∈ P, x ∈ Θinv(m),

where E is a convex polytope modelling the bounded input.
A discrete transition (m,G,U,m′) ∈ Rdscr can be taken for
all solutions x(t) which satisfy the guard G, i. e. x(t) ∈ G.
SoapBox computes an overapproximation of the reachable

states in a step-wise manner. Let δ be a time-step parame-
ter. First, a polyhedral overapproximation of the reachable
states within the time-interval [0, δ] is computed using a safe
first-order approximation of the continuous dynamics (initial
bloating). The initial bloating procedure yields two sops, a
bloated set R0 which contains all reachable states within
the time-interval [0, δ] and a sop V which accounts for the
influences of the bounded input E within the time-interval
[0, δ]. Now, the reachable states within the time-interval
[kδ, (k + 1)δ] are computed according to the recursive for-
mula

Rk+1 = (eδA(Rk) +V) ∩Θinv(m).

Then all intersections with possible guards are computed
until the current flow segment leaves the invariant or com-
pletely lies in a symbolic Safe state. In the next step, Soap-
Box checks whether one of the resulting intersections is an
intersection with one of the symbolic Unsafe states. In this
case SoapBox stops the reachability analysis with an appro-
priate output. Otherwise, the discrete post-images of the
guard intersections are computed and added to the initial
states.
In fact, SoapBox combines the sop-based reachability com-

putation with the reachability algorithm of Le Guernic and
Girard (LGG-algorithm) [7], which computes a coarser over-
approximation of the reachable states. While the sop-based
part of the algorithm has the capability to provide an ex-
act representation, the LGG-algorithm yields fast overap-
proximations in terms of template polyhedra, e. g. it almost
completely ignores the influence of the invariant. Those op-
erations of the reachability analysis which involve linear pro-
gramming, e. g. the subset check for safe sets or the inter-
section tests for guards, are performed in the LGG-part.
After a given number of computation steps, SoapBox uses
ray shooting to improve the overapproximation computed in
the LGG-part by adding some additional information of the
facial structure gained by the sop part. Then the current
sop is replaced by this overapproximation. This procedure
efficiently shrinks the representations size of the sops, but
leads to a loss of accuracy. Anyhow, since this method may
only improve the state sets generated in LGG-part, Soap-



Box still archives tighter overapproximations than the pure
LGG-algorithm.
We should note that the current implementation of Soap-

Box internally uses floating point numbers. While most
sop-based operations consist of block matrix operations and
hence do not introduce additional numerical issues, there
are two main sources of numerical issues regarding the use
of floating point numbers: the usage of the matrix exponen-
tial eδA and the usage of the inexact linear solver Gurobi.
Anyhow, SoapBox has only a few built-in functions, like
scaling, to deal with potential numerical issues. Instead, the
numerical values are passed over to the linear solver. Ex-
periments with GLPK and Gurobi showed that Gurobi

copes quite well with potential numerical issues. The nu-
merical issues stemming from the usage of an inexact solver
can be fixed by using exact arithmetic. Theoretically more
challenging, is a numerical safe evaluation of the matrix ex-
ponential, which also SpaceEx has to face. This issue is
regarded as a promising future research direction.

Handling Strict Inequalities

In order to handle linearizations of dynamics with non-linear
differential inclusions properly, we also allow guards with
strict inequalities. SoapBox handles strict inequalities in
the following way: A transition involving a strict guard
nTx < c is disabled as long as the current flow segment
P does not contain a witness point x which satisfies the
strict guard. Otherwise, the transition is enabled and we
treat the strict inequality as a non-strict inequality. Hence,
in this case, we compute a closed overapproximation of the
actual intersection. The special treatment of strict inequal-
ities avoids zeno-behavior which would occur if we handled
strict inequalities as non-strict inequalities: Let x be a vari-
able of a hybrid automaton with the two modes m1 and m2.
Further, let (m1, x > 5, id,m2) and (m2, x < 5, id,m1) be
two discrete transitions. Treating the strict inequalities as
non-strict inequalities would allow zeno-behavior for x = 5.
With our treatment of the strict inequalities, the transition
from m1 to m2 is enabled for any set (m1, X) containing
at least one element x > 5. The post-image of (m1, X) is
(m2, X ∩ {x|x ≥ 5}) and does not contain a witness for the
guard x < 5. Hence, an instantaneous transition back from
m2 to m1 is disabled and zeno-behavior is avoided.
For such cases this guarantees progress in the reach set

computation.

5. PROOF STEPS
Up to now, we introduced the SC model, the properties

we are interested in (cf. Sect. 2) and the tools we are going
to apply (cf. Sect. 3, 4). In the following we describe the
steps of establishing properties (p1) to (p3). Basically, for
successful verification we had to (i) bridge the model-tool
gap, (ii) simplify the model, (iii) simplify the proof goals
and (iv) apply the tools.

5.1 Proving (p1)
First we showed that SC converges to (βori, dist) = (0, 0)

using Stabhyli. In order to apply Stabhyli we used a
simple overapproximation of the sine and Stabhyli was able
to certify convergence for the overapproximated system.
In the following proof steps we could greatly benefit from

having established convergence first. In particular we used

the Lyapunov functions (LFs) obtained from Stabhyli to
alleviate the proof obligations for establishing (p2).

5.2 Proving (p2)
To reduce the automaton’s complexity we used the obser-

vation that by design SC is symmetric. This yields a steering
controller where either the left or right modes are omitted
(cf. Fig. 2).
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˙distcur = velcur · sin(βori)

˙βori = − 0.005 · distcur
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Figure 2: SC after Exploiting Symmetry

We also transformed the proof goal. If any trajectory of
the reduced model emanating from the initial set finally re-
enters the initial set in mode Keep, we can verify (p2) (and
also (p3)) on the reduced model, as the omitted part of
the automaton does not inject additional behavior in the
retained part.
In general, we can stop computation of a trajectory, when

it re-enters the initial set. Any possible suffix of it is already
covered as a trajectory directly emanating from the initial
set.
In essence, we show on the reduced model that 1. any tra-

jectory emanating from the initial set re-enters the initial
set and 2. any reachable state along a trajectory from initial
set up to re-entering the initial set satisfies (p2).
To use SoapBox for verification of SC we have to transform

the model, so that 1. the bounded input velcur is additive in-
stead of multiplicative, 2. the sinus function is overapprox-
imated. To get rid of the sine, we overapproximated the
distance evolution ˙distcur = velcur · sin(βori) for velcur ∈ [5, 10].

More precisely, we overapproximated ˙distcur ∈ convex(5 ·

sin(βori), 10·sin(βori)) by ˙distcur = a·βori+E where E is a con-
vex polytope denoting a bounded error. Since a single over-
approximation over all possible values, i.e., βori ∈ [−5◦, 5◦],
turned out to be too coarse, we partitioned the state space
along βori

1. This yields a better fitting overapproximation,
but as a side effect the SC’s modes are split up, as illus-
trated in Figure 3. Drawbacks of such partitioning hence
are, that a lot of new transitions are introduced and some
of them can even lead to zeno-behavior. To prove (p2) we
used a finer partition which results in a large automaton. It
is easy to see that some of its transitions do not correspond
to the original flow of the system and can hence be removed
(marked in red in Figure 3).
To apply a partition, SoapBox has to deal with strict in-

equations. Strict inequations allow us to express that sub-
sets are disjoint, while the complete state space is covered. A
division into disjoint subset allows finer overapproximation.
As discussed in Sect. 4.2 SoapBox supports strict inequa-
tions and thereby rules out some forms of zeno-behavior.
Note that transition removal described above was not appli-
cable to the Keep mode.
We further simplified the proof goal. To show the safety

property (p2), we have to show that all reachable states

1Actually the division is overlapping for the boundary value
of βori and transitions refer to ˙βori < 0 or ˙βori > 0, respec-
tively.
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Figure 3: SC after partitioning βori at 0

satisfy distcur ∈ [−10, 10] and βori ∈ [−5◦, 5◦]. We used two
different arguments that allowed us to derive that all future
states of a trajectory satisfy (p2).
The first argument refers to the automaton. Analysis on

the vector field reveal that (a) distcur ∈ [−10, 10] ∧ βori ≥

2 implies ˙βori ≤ 0 and (b) βori ≥ 0 implies ˙distcur ≥ 0.
Thus we can conclude that the upper copies of RightClose,
RightMid, and RightFar in Figure 3 are safe wrt (p2) if
(p2) holds on entering these modes. We instead established
only that any trajectory that enters these modes already
satisfies (p2).
The second argument introduces so-called safe sets that are

subsets of the state space and guarantee that any trajectory
entering such a set will not reach an unsafe set anymore.

Level Sets and Safe Sets

Systems of damped oscillating behavior like the SC are often
difficult to deal with when it comes to determining their
trajectories near the equilibrium due to numerical issues.
In the remainder of the section we sketch an argument that
alleviates the burden of examining every reachable state wrt
a safety property by a sound argument based on the system’s
Lyapunov function. Basically, the argument allows us to
neglect the future of a trajectory as soon as the trajectory
is sufficiently close to the equilibrium. We further describe
its concrete application on the case study to establish (p2).
A Lyapunov function assigns a value to any state of the

state space and this LF’s value along any trajectory de-
creases. Each level set LV,s = {x|V(x) ≤ s} is hence an
invariant set as defined in Def. 3.

Definition 3. Invariant Set. A set of states S ′ ⊆ S is
called an invariant set of a hybrid automaton H if for all
trajectories x(t) holds x(0) ∈ S ′ ⇒ ∀t ≥ 0 : x(t) ∈ S ′.

Now, the alleviating argument for establishing (p2) is, as
soon as a level set has been entered that satisfies (p2), we
can stop further computing the trajectory. As we want to
stop trajectory computation as early as possible, we try to
find a level set as big as possible. Therefore we determine
the minimal LF’s value over all states violating (p2). A state

with a lesser LF’s value is hence guaranteed not to be in the
unsafe set. Such a state is element of the safe set (cf. Def. 4).

Definition 4. Safe Set. Given a set of states Unsafe ⊆ S,
a set SafeUnsafe ⊆ S is called a safe set wrt Unsafe for a
hybrid automaton H, if for all trajectories x(t) holds x(0) ∈
SafeUnsafe ⇒ ∀t ≥ 0 : x(t) 6∈ Unsafe.

Note, that any level set LV,s, which has no intersection
with the set Unsafe, serves as a safe set SafeUnsafe.
To use safe sets for trajectory truncation in a tool, we have

to be able to express when a state is element of the safe
set, i. e. when its LF’s value is sufficiently low. We obtained
quadratic Lyapunov functions for SC from Stabhyli. For
tools supporting linear constraints only, we underapproxi-
mate safe sets via a polyhedron.
To summarize, we used safe sets to truncate trajectory

computation. As SoapBox supports linear constraints only,
we underapproximated the safe set via safe boxes. This
yields the following basic algorithm:

1. Determine the lowest LF’s value b := min{V(x) |x ∈
Unsafe} of all states in the unsafe set.

2. Subtract a safety margin ǫ on the LF’s value, g := b−ǫ,
to build the safe set.

3. Guess a box within the level set LV,g.
Such a box lies within the safe set, if the LF’s value for
any of its corner points is less then or equal to g. Multiple
safe boxes can be found by applying multiple optimization
functions such as maximizing the length of an edge or the
length of the diagonal. This procedure can be automatized
and multiple optimization functions can be combined. We
achieved the best results on the SC model via manual opti-
mization, though. This was easily feasible, as we had to deal
with two dimensions only. The result is shown in Figure 4.
In principle, safe boxes can be encoded into the model. As

SoapBox and many other tools require convex modes, a safe
box within a mode hence implies that the surrounding of the
safe box has to be split into several convex submodes. Soap-
Box supports convex safe sets directly, though, as outlined
in Sect. 4.2.
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Figure 4: Piecewise Level Sets (blue) and Safe Sets
(green) of the Steering Controller

Proving (p3)

That (p3) holds can be seen by examining the differen-
tial equation defining the evolution of βori as shown in Fig-
ure 5. The figure shows a heat map for all combinations of
(distcur,βori) within the bounds as established by (p2). The
color encodes the value of the differential equation for steer-
ing. It hence follows that the value of the differential equa-
tion ranges over [−0.2, 0.2] and thus implies (p3) as long as
(p2) holds.
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Figure 5: Examination of ˙βori

6. CONCLUSION
We have shown how to combine overapproximation, state

space partitioning, Lyapunov functions, bounded reachabil-
ity, and safe sets to prove non-trivial properties. Showing

that a controller stabilizes without exceeding certain op-
eration ranges seems to be an important verification task.
While we believe that our steering controller is far from be-
ing an industrial-sized benchmark, it already shows that dif-
ferent techniques have to be combined to prove interesting
properties.
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