
Simulation and Verification of Hybrid Systems

using HySon∗

Olivier Bouissou†, Samuel Mimram∗, Alexandre Chapoutot‡

0.1, 2014-02-07

Abstract

In an industrial setting, control-command systems are usually vali-
dated using numerical simulation instead of formal verification as pro-
posed by many academic tools. In this paper, we present a tool named
HySon that tries to fill the gap between formal methods and industrial
usage. HySon takes as input a dynamical system described by a Simulink
model and proposes a new simulation engine that safely computes flow-
pipes of the system variables by adapting the numerical simulation algo-
rithms to make them safely propagate sets of values instead of floating-
point numbers. We show how the tool runs and give some results on small
yet challenging examples.

A wide range of academic tools is available in order to ensure the safety of
hybrid systems, which are based on various techniques: computation of reach-
able sets [11, 8], barrier certificates [20, 19, 17], predicate abstraction [1, 23],
etc. However, in an industrial setting, control-command systems are usually
validated using numerical simulation, and formal techniques are not used much.
We see two reasons for this. First, the above mentioned tools are very of-
ten based on a representation of hybrid systems as hybrid automata (or an
equivalent model), while industrial control-command systems are generally first
described in Simulink or Modelica, which offer a rich set of blocks in order to
build hybrid systems: the translation from Simulink to hybrid automata is not
an easy task [22], and some important features of Simulink such as saturation
or lookup tables are difficult to express in the higher-level model of hybrid au-
tomata. Second, control-command systems are very peculiar hybrid systems, in
which discrete actions can be of two kinds: either event-triggered as in hybrid
automata (the zero-crossing events in Simulink) or time-triggered when some
part of the system has a discrete sampling rate. In this latest case, which often
occurs in control-command systems, the translation into the formalism of hybrid
automata can be performed, but causes an explosion of the number of discrete
transitions, as shown in [3].

∗This work was partially supported by the ANR project CAFEIN.
†CEA, LIST, Gif-sur-Yvette, France. {olivier.bouissou,samuel.mimram}@cea.fr
‡ENSTA ParisTech, Palaiseau, France. alexandre.chapoutot@ensta-paristech.fr

1



In this paper, we present a tool, named HySon, whose aim is to fill the gap
between formal methods and industrial usage. It takes as input a dynamical
system described by a Simulink model and offers a simulation engine that safely
computes flowpipes of the evolution of the variables of the system. The internal
simulation engine is based on an adaptation of classical numerical simulation
algorithms in order to make them safely propagate sets of values instead of
floating-point numbers. We believe that this approach can help to improve the
design process of industrial control-command systems because our engine scales
well both in dimension and complexity. In Section 1, we briefly present our
simulation engine, in Section 2 we describe how our tool can be used and give
some examples of systems on which we successfully applied it, and we conclude
in Section 3.

1 Set-based simulation in a nutshell

In this section, we briefly present the theoretical foundations of our simulation
engine. Its main particularity is that it performs set-based simulation: it uses
techniques borrowed and adapted from usual numerical simulation engines, but
propagates sets of values during the simulation. There are three main design
choices that have to be performed in order to elaborate such a simulation system:
one has to choose a representation for sets of values, a technique to handle
continuous evolutions of the system, and finally a way to handle discrete jumps.
We detail how these were implemented in HySon in the rest of this section. For
more details on these techniques, we refer the reader to [6, 7].

Representation of sets. In order to represent sets of reals, we use affine
arithmetic [9]: it is a refinement over interval arithmetic [18] which is able to
keep track of linear correlations between variables. A set of values is represented
by an affine form x̂, which is a formal expression of the form

x̂ = α0 +

n∑
i=1

αiεi

where the coefficients αi are real numbers, and the εi are formal variables rang-
ing over the interval [−1, 1] called noise symbols. Usual operations on real
numbers can be extend to affine arithmetic in a way that over-approximates the
theoretical result on sets of values. Linear operations can be implemented in an
exact way, but most operations like multiplication have to be over-approximated
and create new noise symbols. Some set-theoretic operations can also be per-
formed: for instance, one can compute the hull (or union) hull(x̂, ŷ) of two affine
forms x̂ and ŷ, which is the smallest affine form (or a good over-approximation
of it) in which both x̂ and ŷ are included, see [14] for details.

Continuous evolution. Given a differential equation of the form ẋ = f(x, u),
where x is a vector-valued function of time and u is an input which can be

2



given as an interval. We use numerical schemes such as Euler, RK4 or Bogaki-
Shampine to compute numerical approximations of the solution [21]. When the
initial condition x(0) is given by an affine form x̂0, the evaluation of such a
scheme using affine arithmetic provides a precise and efficient way of computing
approximations of the set of possible solutions of the differential equation de-
pending on the precise value of the initial parameters. If one wants instead to
compute an over-approximation of this set, it is possible to perturb the chosen
numerical scheme by over-approximating the error induced by the method us-
ing the well-known Picard operator and automatic differentiation, as explained
in [5].

Discrete jumps. In Simulink as in other formalisms, discrete jumps can be
represented as equations of the form “on (g(x) = 0) do x = r(x)” which means
that the value of the variables x has to be reset to r(x) as soon as the condition
g(x) = 0 is satisfied. Note that the operation of changing state in an hybrid
automaton can be encoded in this way using a discrete variable in x which
encodes the current state. The main difficulty in handling such events consists
in detecting the exact time τ and affine form x̂τ such that g(x̂τ ) = 0. In order
to do so, the technique used in many tools is to continue the simulation in order
to obtain two states x̂l and x̂r such that g(x̂l) < 0 (i.e. ∀x ∈ x̂l, g(x) < 0) and
g(x̂r) > 0, and then use an intersection to obtain a tight enclosure of x̂τ . In
HySon, instead of performing intersection with the hyperplane g(x) = 0 which
can be complicated when g is non-linear, we use a guaranteed version of the
algorithm used in Simulink [4]: we bisect on the time interval [tl, tr] and use
an extrapolation polynomial to obtain over-approximation of x at any time
t ∈ [tl, tr].

2 Simulation using HySon

The above described techniques have been implemented in a tool named HySon
and applied to hybrid systems written in Simulink. We developed a parser for
Simulink models that translate them into an intermediate language of simple
equations, as described in [4]. As shown in the following table, our tool supports
many Simulink blocks, making it already usable for complex models:

Block type Block name
Continuous Integrator

Discrete DiscreteIntegrator, UnitDelay, ZeroOrderHold
Signal routing Mux, Demux, From, Goto, Subsystems
Mathematics Abs, Gain, MinMax, Sum, Product, Saturate

Sin, Trigonometry
Inputs Clock, Step, Constant, Ground, InitialCondition
Logic Logic, Compare To Zero, Compare To Constant

Switch, RelationalOperator

3



Figure 1: Use of HySon on a Simulink model of a quadrotor system. On the left,
the high-level Simulink model and on the right the interval parameter given to
the initial position of the quadrotor.

Figure 2: Result of HySon on the quadrotor system.

In order to ease the use of HySon for industrial models, we integrated it smoothly
into Simulink: we propose a new block, named the HySon block, that can be
inserted into an existing diagram. As show on Figure 1, the user can then modify
some parameters of the model with the keyword interval(a,b): this specifies
that the given parameter is unknown but remains in the interval [a, b]. For
example, initial conditions of Integrator blocks can be specified in this way.
The simulation of the whole model is then performed by HySon engine instead
of Simulink’s one. Depending on the chosen mode, the output is a simulation
of the system (when set-based simulation is used) or an over-approximation of
the dynamics (when guaranteed set-based simulation is used).

Note that HySon can handle systems with both discrete-time (i.e. sampled)
blocks and continuous-time blocks. We use the same step-size selection mech-
anism as Simulink in order to ensure that we hit each sampling time during
our simulation. For example, in the system of Figure 1, the PD Controller

subsystem is discrete, with a sampling time of 0.01 seconds while the Plant

subsystem is continuous. Note also that continuous blocks are allowed to define
zero-crossing events that are handled as described in Section 1.

Being based on numerical simulation methods, our tool handles systems
with both non-linear dynamics and non-linear guards. It also scales well to
high-dimensional problems, at least in the simulation mode. For example, the
system shown in Figure 1 is a model of a proportional-integral controller for

4



ẋ = v · cos(δ) · cos(θ), x(0) ∈ [0, 1]
ẏ = v · cos(δ) · sin(θ), y(0) ∈ [0, 1]

θ̇ = 0.2 · v · sin(δ), θ(0) ∈ [0, 0.01]
v̇ = 0, v(0) = 7

δ̇ = 0.2, δ(0) = 0
(a) Car model

x

y

(b) The darker sets are the closest to
the simulation end.

Figure 3: Non-linear system simulation

t

x

Figure 4: Results of HySon on the classical thermostat hybrid system (up to
t = 30s).

a quadrotor system whose dynamics is highly non-linear with 12 continuous
variables. A complete description of the system can be found in [2] and the
equations of the dynamics are given in [7]. We want to perform a simulation of
this system up to t = 4s, HySon achieves this in 4.4s.

Let us also remark that although we are using affine forms, the bounds we
obtain for the system variables can be stable even for non-linear dynamics. For
example, consider the system given at Figure 3(a). Using HySon, we obtain the
evolution shown in Figure 3(b) in the (x, y) plane (this was computed in 12.3s)
for a simulation time up to t = 30s. This shows that the over-approximations
we perform for non-linear computations do not perturb our simulation engine.

Clearly, HySon was primarily designed to handle control-command systems,
i.e. hybrid systems in which the discrete evolution is time-triggered rather than
event-triggered. However, as shown in Section 1, it can also handle guards
and jumps, that we call zero-crossing events, and can thus perform guaran-
teed bounded-time reachability for hybrid systems. Consider for example the
classical room-heating system with one room [10], in which the dynamics of the
temperature x switches between two functions depending on the value of x. The
result of HySon on this system is shown in Figure 4: as can be seen, the width
of the enclosure for the temperature x remains stable as time goes by.

3 Conclusion

We presented a tool named HySon that adapts numerical simulation algorithms
to perform set-based simulation and guaranteed flowpipe construction of Simulink

5



models. It can handle many feature of the Simulink language and, as shown
by our examples, it scales well in dimension and complexity. We believe that
this tool can be very useful both as a verification tool but also in an early de-
sign process to evaluate the performance of a control-command system in the
presence of uncertainties.

We plan to increase the number of Simulink blocks that our tool can handle.
The main challenges we see come from the Saturate and Lookup Tables blocks.
For the Saturate block, the difficulty is to keep relations between the input and
output of the block, and for the the look-up tables, we will need to define new
extrapolation algorithms working on affine forms.

Note that simulation has recently gained interest from hybrid systems com-
munity [13, 15, 16]. We believe that understanding and using numerical sim-
ulation algorithms is very important as they are used every day by engineers
creating hybrid systems, and our experience showed that it they can be adapted
to produce guaranteed results rather than approximations. We thus plan to con-
tinue in this direction by applying the same ideas for DAE solvers as the ones
used in Modelica [12].

References

[1] R. Alur, T. Dang, and F. Ivančić. Counter-example guided predicate ab-
straction of hybrid systems. In TACAS, volume 2619 of LNCS, pages 208–
223. Springer, 2003.

[2] S. Bouabdallah. Design and control of quadrotors with application to au-
tonomous flying. PhD thesis, 2007.

[3] O. Bouissou. From control-command synchronous programs to hybrid au-
tomata. In ADHS, 2012.

[4] O. Bouissou and A. Chapoutot. An operational semantics for Simulink’s
simulation engine. In LCTES. ACM, 2012.

[5] O. Bouissou, A. Chapoutot, and A. Djoudi. Enclosing Temporal Evolu-
tion of Dynamical Systems Using Numerical Methods. In NASA Formal
Methods, number 7871 in LNCS, pages 108–123. Springer, 2013.

[6] O. Bouissou, A. Chapoutot, and S. Mimram. HySon: Precise Simulation
of Hybrid Systems with Imprecise Inputs. In RSP. IEEE, 2012.

[7] O. Bouissou, A. Chapoutot, S. Mimram, and B. Strazzulla. Set-based
simulation for design and verification of Simulink models. In ERTS2, 2014.

[8] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for
non-linear hybrid systems. In CAV, volume 8044 of LNCS, pages 258–263.
Springer, 2013.

[9] L. H. de Figueiredo and J. Stolfi. Self-Validated Numerical Methods and Ap-
plications. Brazilian Math. Colloquium monographs. IMPA/CNPq, 1997.

6



[10] A. Fehnker and F. Ivancic. Benchmarks for hybrid systems verification. In
HSCC, volume 2993 of LNCS, pages 326–341. Springer, 2004.

[11] G. Frehse, C. Le Guernic, A. Donzé, R. Ray, O. Lebeltel, R. Ripado, A. Gi-
rard, T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid
systems. In CAV, volume 6806 of LNCS, pages 379–395. Springer, 2011.

[12] P. Fritzson. Introduction to Modeling and Simulation of Technical and
Physical Systems with Modelica. Wiley, 2011.

[13] A. Girard and G. J. Pappas. Verification using simulation. In HSCC,
volume 3927 of LNCS, pages 272–286. Springer, 2006.

[14] E. Goubault and S. Putot. A zonotopic framework for functional abstrac-
tions. arXiv:0910.1763 preprint, 2009.

[15] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia. Mining requirements
from closed-loop control models. In HSCC, pages 43–52. ACM, 2013.

[16] J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and N. Aŕechiga.
Simulation-guided Lyapunov analysis for hybrid dynamical systems. In
HSCC, 2014.

[17] H. Kong, X. Song, D. Han, M. Gu, and J. Sun. A new barrier certificate
for safety verification of hybrid systems. The Computer Journal, 2013.

[18] R. E. Moore. Interval analysis. Prentice-Hall, 1966.

[19] S. Prajna. Barrier certificates for nonlinear model validation. Automatica,
42(1):117–126, 2006.

[20] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using bar-
rier certificates. In HSCC, volume 2993 of LNCS, pages 477–492. Springer,
2004.

[21] L. Shampine and M. Reichelt. The MATLAB ODE Suite. Journal on Sci.
Comput., 18(1):1–22, 1997.

[22] K. Sukumar. Translation of Simulink/Stateflow models to hybrid automata,
2011.

[23] A. Tiwari. Abstractions for hybrid systems. Formal Methods in Systems
Design, 32:57–83, 2008.

7


	Set-based simulation in a nutshell
	Simulation using HySon
	Conclusion

