
Computing Probability Distributions Over a Hybrid State
Space: Case Study and Practical Limitations ∗

[Experience Report]

Alessandro Pinto
United Technologies Research Center

2855 Telegraph Avenue
Berkeley, CA 94705

PintoA@utrc.utc.com

George A. Mathew
United Technologies Research Center

2855 Telegraph Avenue
Berkeley, CA 94705

MathewGA@utrc.utc.com

ABSTRACT
The problem of computing the probability distribution over
the hybrid state space of a Discrete-Time Stochastic Hybrid
System (DTSHS) is considered. A tool called USHVER
(UTRC SHS Verifier) is presented that allows to model DT-
SHSs directly in C++. Once a system is modeled, it can
be used by back-end tools to perform Monte-Carlo simula-
tions, reachability analysis, or property checking using the
Sequential Probability Ratio Test. Given the complexity of
the models usually found in realistic design problems, the
development of USHVER has been constrained by the re-
quirement of begin agnostic with respect to the dynamics of
the system: flows and reset maps are treated as black-box
models. In this paper, the basic ideas on which USHVER is
built are presented. In addition, a detailed model of the ther-
mal management system of a prototypical aircraft is used to
present some results and discuss the limitations of the ap-
proach on realistic applications.

1. INTRODUCTION
In 2010, the United Technologies Research Center (UTRC)
conducted a study on the subject of verification of dynami-
cal systems subject to uncertainty [12]. Several tools existed
for the verification of probabilistic systems [5, 14, 4, 10].
They either addressed the verification problem for Markov
Chains, or they imposed restrictions on the dynamics and
uncertainty in the SHS model. The study led to the devel-
opment of a tool called USHVER to model Discrete Time
Stochastic Hybrid Systems (DTSHS) directly in C++ and to
perform simulation and analysis. Many of the assumptions
typically made on the dynamics of a DTSHS to limit the
complexity of the analysis task are often too restrictive to
capture realistic systems. Thus, it was intentional to avoid
making any assumption on the dynamics of the system and
to understand the limitations of the resulting tools. In this
article, we report our experience in developing and using the
software. In Section 2, we introduce an operator that allows
to compute the evolution of probability measures over time.
We also briefly discuss why such operator is interesting for
the development of USHVER. In Section 3, we describe the
tool including the main architectural decisions. In Section 4,
we present an example with the intent of showing our expe-
rience in creating an abstract model of a system that still
includes relevant details. In Section 5 we show some results

∗Content taken from the DARPA V2D2 Study “Stochastic
Analysis and Design of Systems” [12]

and in Section 6 comment on the limitations we faced in
using the tools. We also believe that the model presented
in Section 4 could be used in the future to create a bench-
mark for stochastic hybrid systems given its level of details
including the values of all key parameters.

2. MARKOV MODELING OF STOCHASTIC
HYBRID SYSTEMS

Several methods for the analysis of DTSHS (and dynamical
systems) are based on discretization. For example, the ap-
proximation technique recently developed by Abate et al. [3,
7] starts from a a finite partition of the state space and use
Markov Set-Chains [9] as approximate model fo the origi-
nal DTSHS. The authors focus on providing error bounds
between the original system and the Markov Chain approxi-
mation but place some restrictions on the smoothness of the
probability distributions.

Discretization techniques have been exploited in the work
of Dellnitz [6] and Froyland [8] that have used set-oriented
methods to model continuous dynamical systems. The basic
idea in this work is to partition the domain of the contin-
uous variables (referred to in the sequel as the continuous
state space) into a finite number of sets. Each set becomes
the state of the Markov chain where transition probabili-
ties are interpreted as the probability of a typical point in
one set to move to another set under the constraint imposed
by the dynamics of the system. This approach is used in
USHVER except that the hybrid nature of the dynam-
ics, namely the jump conditions and the different dynamics
for each mode of the hybrid system need to be taken into
account. This discretization technique is general and al-
lows removing restrictions on the dynamics of the system
and on the probability distributions of the stochastic pro-
cesses. Unfortunately, this freedom comes at the expense
of the complexity of the analysis task and leads to the inabil-
ity of computing error bounds in the general case. However,
the method used in USHVER has other important practical
properties stated later in this Section.

The discrete state space is represented by Q and we con-
sider a continuous state in Rn. The state space of the hy-
brid system can then be defined as S = Q× Rn = ∪i{qi} ×
Rn (this model has been extended to a more general state
space and to IO-DTSHS in [12] and extensions are sup-
ported by USHVER). The state space model for a dis-



crete time stochastic hybrid system is a collection H =
(Q, Init, T, L,R) where Q := {q1, q2, ...., qm} is a finite set
of modes with m ∈ N; Init : B(S)→ [0, 1] is an initial prob-
ability measure on S; T (the flows) is a stochastic map that
describes the dynamics of the continuous variables x ∈ Rn in
each mode; L is a switching probability function that gives
the probability of switching between various modes; R is a
stochastic map that probabilistically resets the values of the
continuous state variables when a switch occurs from mode
qi to mode qj . The dynamics of the continuous variables in
mode qi is given as x(n+1) = T (qi, x(n), ξi(n)), where ξi(n)
is an i.i.d process with distribution Ni. L(x, qi, .) is a proba-
bility measure on the discrete state space Q. i.e., L(x, qi, qj)
gives the probability of the system to jump from mode qi to
mode qj given the value of the continuous state x. The reset
is given as x(n + 1) = R(qi, qj , x(n), ηj(n)) where ηj(n) is
an i.i.d process with distribution Wj .

The execution of a state space model for the discrete time
stochastic hybrid system over a finite time horizon [0, N ]
is defined as in [3]. We will now define how the probability
measure can be propagated over time. With a slight abuse of
notation, we use the same symbols for measures and prob-
ability distribution functions. For the flow corresponding
to each mode qi, the propagation of measures is described
by the Frobenius-Perron operator corresponding to the map
T (qi, ., .). This is the unique operator [Pi] such that

∫
A

[Pi]µ(x)dx = Eξi

∫
Rn

µ(x).χA(T (qi, x, ξi))dx


For all A ⊂ Rn. Note that if the probability measure at time
k is given by µ(k), then the measure at time k + 1 is given
as µ(k + 1) = [Pi]µ(k). Moreover, eventhough the maps
T (q(k), x(k), ξi(k)) are non-linear, the Frobenius-Perron op-
erators are linear, but infinite-dimensional. For more details
on the theory of these transfer operators, see [11]. For the
switching between the modes qi and qj , we define the switch-
ing transfer operator as
[Li,j ]µ(x) = L(x, qi, qj).µ(x). Finally, the change in mea-
sures due to probabilistic resets is given by the Frobenius-
Perron operator [Mi,j ] corresponding to the mapR(qi, qj , ., .)
computed similarly to operator [Pi] above.

The evolution of the probability measures over the whole
hybrid state space can be described using a single transfer
operator given as Γk+1 = PΓk, where Γk = [µk1 , . . . , µ

k
m]T

and µki is the sub-probability measure restricted to mode i
at time k. The transfer operator P is a block matrix, where
block (i, j) is the product PiMi,jLi,j of the flow, reset and
jump operators. Operator P could be used as input to proba-
bilistic model checkers developed for Markovian models (e.g
[10, 1]). In [6], Dellnitz et al. describe set oriented numerical
methods to construct finite dimensional approximations for
the Frobenius-Perron operator corresponding to a continu-
ous dynamical system. The state space is partitioned into
a finite number of connected sets {A1, A2, ...., An}. To form
the Markov model, each set Ai is identified with a state i of
an n-state Markov chain. A n× n matrix P is constructed,

where Pij =
m(Ai∩T−1Aj)

m(Ai)
with m the Lebesgue measure.

The attractive features of the Frobenius-Perron operator are

the following. As the size of each set Ai gets smaller (and
therefore n increases), the approximation gets better mean-
ing that the probability distributions computed using the
operator tend to the ones of the original system. Moreover,
the operator is linear meaning that computations can be par-
allelized. In addition, whenever the probabilities Pij of the
operator are computed through simuations, such simulation
jobs can also be distributed over multiple machines.

3. USHVER
The implementation of the USHVER tool had to address
several challenges. First, the DTSHS model described in
Section 1 needed to be ultimately represented in memory.
We avoided the definition of a language and a parser and
we decided to provide a set of base classes directly in C++
that the user could simply extend for modeling a particu-
lar system1. The base class for a DTSHS is called Shs and
provides methods to add sub-systems (allowing hierarchical
models), modes and transitions. The Mode base class is ex-
tended by the user to define a mode in a DTSHS. The user
overrides the Flow function which, given the continuos state
and the input, computes the new continuous state. This
map can be deterministic or stochastic depending on the
model. The Transition base class is extended by the user
to define a transition between two modes. The user over-
rides the Switch and Reset methods and also defines the
source and target modes. The switch method computes the
probability of taking the transition in a given state and for a
given input, while the reset method is a map that, given the
continuos state and the input, computes the new continuous
state. A leaf DTSHS is built by instantiating the base class
and adding modes and transitions to it. Multiple DTSHSs
can be added to a parent DTSHS and wired through input-
output connections. The Shs base class provides a method
Compose to compose its children (this method is called from
the root Shs and it is propagated throuhg the hierarchy).
The Shs model is the input to several algorithms such as sim-
ulation, reachability and the SPRT algorithm. The outputs
of these algorithms are hybrid traces or hybrid probability
ditributions. A set of observers and filters is also provided
to probe the Shs model in specific points (inputs, outputs
and states).

As noted in the introductory section, reachability analysis is
performed over a discretized state space. USHVER provides
a grid data structure to encode the discretization without in
fact creating an actual grid. Each mode qi is character-
ized by an invariant region Inv(qi) ⊂ Rd(qi), where d(qi) is
the dimension of the continuous state space in mode qi. We
limit our discussion to invariant regions that are orthotopes,

meaning products of intervals: Inv(qi) =
[
x
(i)
1,l, x

(i)
1,u

)
× . . .×[

x
(i)
n,l, x

(i)
n,u

)
, where we denoted by x

(i)
j,l and x

(i)
j,u the lower

and upper bound of the j-th variable in the i-th mode, re-

spectively. For a mode qi, let G(i) = (g
(i)
1 , . . . , g

(i)
n ) represent

the grid, where g
(i)
d is the number if intervals for the d-th

state. The length of each interval is l
(i)
d =

x
(i)
d,u
−x(i)

d,l

g
(i)
d

The

1Please refer to http://www.alessandropinto.net/data/
ushver/html/bouncing_ball_example.html for an example
of how DTSH, modes and transitions can be defined in
USHVER.

http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_shs.html
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_mode.html
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_mode.html#a5430eb6acf7d6d560a2a637126e40369
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_transition.html
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_transition.html#a9dfea53c4919c388a4de10916109317a
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_transition.html#a6e04ed540db950df7a65fafca15bb4ee
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_shs.html#a610885a813b62909ac79f220059015a5
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_constant_time_step.html
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_constant_time_step.html
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_reach_progagate_otf.html
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_sprt.html
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_hybrid_trace.html
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_hybrid_distr_trace.html
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_hybrid_distr_trace.html
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_observer.html
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_data_filter.html
http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_griddy.html
http://www.alessandropinto.net/data/ushver/html/bouncing_ball_example.html
http://www.alessandropinto.net/data/ushver/html/bouncing_ball_example.html


j-th interval is I
(i)
d,j =

[
x
(i)
d,l + (j − 1)l

(i)
d , x

(i)
d,l + jl

(i)
d

)
. The

discretization induces a new state space which is now finite

and defined as Ŝ =
⋃m
i=1{qi} × [1, g

(i)
1 ] × . . . × [1, g

(i)
n ]. Let

s ∈ Ŝ be a state such that s = (qi, j1, . . . , jn). Then, we use
the following notation: mode(s) = qi, B(s) = (j1, . . . , jn)

and H(s) = I
(i)
1,j1
× . . .× I(i)n,jn . The finite state space is now

encoded into a linear array for each mode. For a given mode,

the total number of discrete states is n
(i)
m =

∏D(qi)
d=1 g

(i)
d . The

discrete linear hybrid state space is ŜL = ∪q∈Q{q}× [1, n
(i)
m ].

The encoding is implemented by a function map : Ŝ → ŜL
that given a hybrid state s ∈ Ŝ computes s′ ∈ ŜL as follows:
mode(s) = mode(s′) = q and

B(s′)|1 = B(s)|D(q)+
∑D(q)
d=1

(∏D(q)

d′=d+1 g
(i)
d

)
(B(s)|d−1). Fi-

nally, grids of multiple DTSHSs can be composed within a
system by a grid composition operator.

To perform reachability analysis, it is necessary to compute
operator P over the discretized state space. The generic
entry Pij of a flow operator can be interpreted as the prob-
ability that a typical point in the set Ai moves into the set
Aj under one iteration of the map T describing the flow.

The expression Pij =
m(Ai∩T−1Aj)

m(Ai)
does not have an ex-

plicit form in our case becasuse the flow and reset maps
are generic, directly expressed in code (a design choice as
explained in the introduction). Thus, the quantity Pij is
computed by a Monte-Carlo approach. One randomly se-
lects a large number of points {a1, ...., aN} ⊂ Ai and sets
Pij ≈ #{a ∈ {a1, ...., aN} : T (a) ∈ Aj}/N2. Obviously,
there are cases where Pij can be computed in closed form
and no sampling is required.

The first simple approach to reachability analysis is to gen-
erate the entire matrix representing the transfer operator.
This approach would require to compute the quantity Pij for
each state i of the finite Markov Chain approximation even if
state i is actually never reached by the dynamics of the sys-
tem when considering the initial distribution. Thus, in the
implementation of USHVER, the computation of transfer
operators and the probability measure propagation are in-
terleaved to avoid considering those parts of the state space
that are never reached. The reachability analysis algorithm
explores the set of reachable states explicitly. The basic data
structure used to hold the reachable state space is a reacha-
bility graph RG(C,E, P ) where C is a set of vertexes, E is a
set of edges and P : E → [0, 1] is a function that associates
a probability to each edge. A cell is a tuple c(s, µ) ∈ C such

that s ∈ ŜL, µ ∈ [0, 1]2 representing the probability of being
in state s – the probability measure is a vector of two ele-
ments for efficiency reasons so that measure propagation can
be done with a single sweep over the set of reached states.
Algorithm 1 shows the basic algorithm. A pair of queues Qn
is used to avoid expensive copy operations when new states
are discovered and during measure propagation.

The algorithm alternates between the discovery of new reach-
able states and measure propagation. The queue of reached
cells Q and the current queue of states to be processed Qn[1]

2The curious reader may find an example of how this is com-
puted inside the reachability analysis code by an operator
called LocalPf also discussed later in this article

Input: DTSHS H, N
Output: RG(Q,E, P )
k ← 0 ;
/* Initialize the reachable set */
Q← Init(H) ;
/* Qn is the frontier of new reached cells */
Qn[0]← Q ;
while k < N do

/* Previous and current indices */
i← 1− kmod2, in ← kmod2 ;
Qn[in]← ∅ ;
forall the c(s, µ) ∈ Qn[i] do

(S′, P ′)← LocalPf(s) ;
forall the s′ ∈ S′ do

c′ ← (s′, (0, 0)) ;
if c′ /∈ Q then

Q← Q ∪ {c′} ;
Qn[in]← Qn[in] ∪ {c′} ;

end
E ← E ∪ {(c, c′)} ;
P (c, c′)← P ′(s′) ;

end

end
/* Propagate the probability measure */
forall the c(s, µ) ∈ Q do

µ[in]← 0 ;
end
s forall the (c(s, µ), c′(s′, µ′)) ∈ E do

µ′[in]← µ′[in] + µ[i] · P (c, c′);
end

end
Algorithm 1: Reachability and measure propagation

(i.e. new states found in the previous iteration) are initial-
ized with the set of initial states with a non-zero probability.
The index of the queue containing the cells found in the pre-
vious iteration is i, and the index of the queue which will
contain all the new states reachable in one step is in. In
the discovery phase, for each cell in Qn[i], a function Lo-

calPf (local Frobenius-Perron operator) computes a set of

new states S′ ∈ ŜL with associated probabilities P ′ (i.e. the
probability of reaching state s′ ∈ S′ from s). This function
takes into account flows, jumps and reset maps. Each new
state is added to the next queue Qn[in] and to queue Q.
Finally, the edges of the graph and the associated probabil-
ity are also added to the reachability graph. In the second
phase, the algorithm propagates the probability measures.
For each cell in the reachability graph, probability mass is
moved to the output cells according to the previous value of
the probability measure and to the transition probabilities
P .

Optimizations. The basic algorithm has several drawbacks
in terms of memory requirements and speed. A few improve-
ments have been implemented to deal with clocks and to
limit memory requirements. If the evolution of a clock vari-
able is independent from other variables (free clock), then
the dynamics of the system is invariant with respect to the
value of the clock. Thus, for a state s = (qi, δ, j1, . . . , jn)
where δ is a free clock, we generate a state st = (qi, 0, j1, . . . , jn)
which is queried for any other value of the free clock. This
method allows avoiding unnecessary calls to the LocalPf

function which is in general expensive.

As the probability measure is propagated over time, the
probability mass of some cells descreases and may even be-

http://www.alessandropinto.net/data/ushver/html/classutrc_1_1lsha_1_1_shs.html#aaed5c7b4f526eb704ffa057991704ff5
http://www.alessandropinto.net/data/ushver/html/_reach_progagate_otf___c_i_q_c_8cpp_source.html#l00495
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Figure 1: High-level model of the system under
study.

come zero. For example, if a clock is used to encode time,
then the probability mass at step t + 1 of all cells with the
value of the clock variable less than t+ 1 should be equal to
zero. Thus, these cells can be removed from the queue with
large memory savings. During the execution of the reacha-
bility algorithm we periodically traverse Q and we remove
states that have zero probability mass. Traversing the queue
of reached states is an expensive operation but can reduce
memory requirements. The removal is non-trivial and re-
quires multiple passes starting from cells which do not have
input edges in the reachability graph. This is important as
it is not possible to remove cells with zero probability values
but with some active cells in their input cone of influence.

4. EXAMPLE
We model the thermal management system of a prototypical
aircraft executing a certain class of missions. USHVER is
then used to computed the fuel temperature distribution
over time from take-off to landing. The purpose of this ex-
ercise is to use the tools and show their limitations on a
realistic case study. At the same time, we hope that the
models described in this section will be of use in setting up
a benchmark for future studies.

The fuel temperature on an aircraft is affected by the mis-
sion profile, weather conditions and heat loads such as the
engine and the electric power system. All these elements are
uncertain. Figure 1 shows a high level model of the system
to be analyzed. The mission profile drives the dynamics of
all the aircraft sub-systems inducing a power requirement
profile w(t), thrust profile f(t), velocity profile v(t), and al-
titude profile h(t). The heat generated by the electric power
system depends on the efficiency of the generators ηG and
the efficiency ηC of other components (such as power con-
verters) that are present on the aircraft3. The altitude and
velocity of the aircraft affect the air temperature TA and air
density dA and therefore the ability to extract heat through
a Fuel/Air heat exchanger. Weather conditions also impact
TA as well as the heat that needs to be rejected by the ther-
mal management system (due to kinetic effects). Finally,
the amount of fuel consumption affects the fuel flow rate
through heat exchangers, thereby affecting the temperature
of the fuel at their outlets. All these effects must be mod-
eled: the mission profiles, the environment such as weather
conditions, and the system under study.

Modeling the mission profile. Several standard profiles
of missions are available in literature [13], ranging from short

3We have omitted other heat loads such as the engine in
Figure 1 for brevity.

Figure 2: Mission profile of a mission without refu-
eling.

Mission phase H (kW ) W (kW ) F (kg)
Taxiing 18.44 84.1 4, 325
Take-off/Decelerating/ 26.63 84.4 17, 300
Landing
Ascending/Descending 27 83 17, 300
Flying 20 76.4 8, 000

Table 1: Heat load, power and thrust requirements
for a prototypical UAV.

to long missions which may include refueling. The stochas-
tic hybrid system model of the mission profile we selected
is shown in Figure 2. Each state represents one phase of
the mission and it is characterized by a set of differential
algebraic equations that defines the way in which altitude
h, velocity v, thrust f and power requirement w change over
time. Variables δ is used to encode time. The aircraft re-
mains on the ground for a certain amount of time δ̃t which
is a random parameter. During taxing, the aircraft requires
some level of thrust ft and some level of power wt that are
both considered constant.

The take-off phase is characterized by a constant altitude,
a constant acceleration of the vehicle and constant thrust
and power requirement. When the aircraft reaches a veloc-
ity vtoff , the mission switches to a phase where the aircraft
starts ascending. When a target altitude htg is reached, the
mission changes phase to a state where the aircraft flies at
constant altitude. During this phase thrust, power require-
ment and velocity change according to a set of stochastic
differential equations. After a random amount of time t̃l,
the aircraft starts its descending phase and switches to the
deceleration phase when the altitude reaches a landing al-
titude hld. Finally, the aircraft lands and ends the mission
when the ground is touched. The end-of-mission (eom) state
is an accepting state of this automaton.

The maximum total take-off weight of the aircraft is approx-
imately 50, 000 kg. We consider that the aircraft is initially
full of fuel. The dry mass of the aircraft is 10, 400 kg, and
the total fuel capacity is 8, 400 kg. The average heat, power
and thrust requirements (H, W and F , respectively) in the
different phases of the missions are shown in Table 1.

The thrust needed to keep compressing air into the engine
in the taxiing mode is 25 % of the take-off thrust. We as-
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sume that the time spent in this mode of operation is uni-
formly distributed between 5 and 15 minutes. During take-
off, velocity increases according to the following equation:

v̇ =
f−fdrag

m
with fdrag = cd · ρ · A · v2, where the drag co-

efficient cd = 0.048, ρ is the air density and A is the wing
area which we consider to be 28 m2. The take-off velocity is
vtoff = 240 km/hr. The climb angle is π/3 and the target
altitude is htg = 10, 000 m. The descend rate is hd = 300
m/s and the landing altitude is hld = 200 m.

Modeling the weather conditions. The ram air tem-
perature depends on the air density and temperature (as
well as the speed of the aircraft). We use models simi-
lar to the U.S. Standard Atmosphere models [2]. The key
variables of interest to us are: The altitude h, the pres-
sure p, the temperature T , the acceleration due to gravity
g = 9.8m/sec2, the radius of earth R = 6356.766km, the
sea level temperature T0 = 15.00C and the sea level pres-
sure p0 = 101, 325N/m2. The model comprises a series of
six layers, each defined by a linear temperature gradient also
called lapse rate. The base altitude for a layer is denoted by
hn while the lapse rate is λn (in K/km). The temperature
distribution within layer n is given by T = Tn + (h−hn)λn.
Using the ideal gas law equations and the equations for hy-
drostatic equilibrium, the pressure distribution within layer

n is given by the expression p
pn

=
(

1 + (h−hn)λn

Tn

)−g/(λnR)

.

For isothermal layers (λn = 0), the above expression reduces

to p
pn

= e−(h−hn)g/(RTn). The above equations link the alti-
tude to the pressure and temperature of the air that is used
for the fuel-air heat exchangers on the aircraft. We only con-
sider the first two layers with h0 = 0 m, λ0 = −6.5 K/km,
h1 = 11 km, λ1 = 0.

Modeling the Thermal Management System. Fig-
ure 3 shows the model of the thermal management system
where we consider the flow rates at steady state or slowly
varying. Also, the volume of the fluid in this circuit changes
relatively slowly. If this assumptions do not hold, then it is
possible to better approximate the behavior of the system by
using a series of models at constant flow rate, and capturing
the transient effects in the transitions among modes.

A pump is used to push fuel from the tank through the fuel
circuit. The heat produced by the environmental control
system, the electric power system and the engine is absorbed
by the fuel through heat exchangers that we have abstracted

in this model. Part of the fuel is used by the engine while
the rest returns to tank. Before entering the tank, the fuel
is cooled to an appropriate temperature by an Air/Fuel heat
exchanger that uses ram air. The variables of interest in this
model are the total fuel level in the tank, the fuel flow rate,
and the fuel temperature.

Using the nomenclature in Figure 3, we model the system
with the following equations:

• Ṁ = ṁin − ˙mout = −ṁf , M(0) = M0. This equa-
tion links the engine fuel consumption ṁf to the total
fuel mass M (where M0 is the total fuel mass at the
beginning of the mission). The fuel rate ṁf can be de-
rived from the thrust and from the thrust specific fuel
consumption (TSFC) of the engine. For example, one
representative engine consumes 0.7 lb/lbt/hr (pounds
per pounds of thrust per hour) without afterburner,
and 2 lb/lbt/hr with afterburner.

• ˙moutcf (Tf − Tout) = HL where HL is the total heat
rate from the heat loads on the aircraft. In this equa-
tion cf is the specific heat of the fuel which is assumed
to be 0.2 kJ/kg K.

• ṁincf (Tf − Tin) = HS where HS is the heat rate that
the sink is able to reject. The heat rate HS depends
on the velocity of the aircraft, the air density and the
air temperature.

• The continuous dynamics for fuel-mass(M) and fuel-

tank-temperature(T ) for all modes are given as Ṁ =

−mf and Ṫ = 1
M

(minTin −moutT +mfT )

5. PARAMETERS AND RESULTS
The system that we consider has five continuous variables
and eight modes, although the last mode has a trivial be-
havior. The continuous variables are the altitude (h), the
velocity (v), the fuel-tank mass (M), the fuel-tank tempera-
ture (T ) and a clock variable (δ). We are interested in com-
puting the marginal probability distribution of the fuel-tank
temperature at the end of the mission (i.e. when the system
enters the eighth mode). Some of the mode transitions are
triggered by the clock variables. For example, the switching
probability from the taxing mode to take-off mode depends
only on the clock variable δ which is reset to zero after mode
transition. We set mout = 2mf and min = mout−mf . This
means that we are not modeling any additional control on
the fuel rate. A controller could be added to the model, al-
beit an increase in the number of states and, therefore, in the
complexity of the analysis. HL is the heat-load. Part of the
fuel that is not consumed by the combustor is recirculated
through the fuel-air heat exchanger back to the fuel-tank.
The temperature drop in the fuel after passing through the
fuel-air heat exchanger is assumed to be a fraction (f) of
the difference in the temperature of the fuel and air. This
temperature drop is a function of the heat-exchanger effec-
tiveness and depends on how often the ram air inlet can be
opened. We set f = 0.1. The outside air temperature is
modeled using different layers with different lapse rates. For
our studies, only the first two layers are important. The
temperature in the first two layers is given by the following



model:

Tair = T0 − 6.5h for 0 ≤ h ≤ 11.0

Tair = 0.751865T0 for 11.0 < h ≤ 20.0
(1)

where T0 = 150C = 288.15K and h is in km. We assume an
that the fuel temperature is initially distributed uniformly
between 288 and 298 degrees Kelvin. Also, we discretize the
dynamics of the system using a Euler Forward Scheme. The
discretization step is 1 second.

A simulation trace of the system obtained with USHVER is
shown in Figure 4. The figure shows variables M (fuel mass
in the tank) and T (fuel temperature in the tank) as a func-
tion of time. These simulations are just reported to provide
an understanding of system works and the effect of a de-
screasing fuel level on the fuel temperature.

A simulation trace of the system obtained with USHVER is
shown in Figure 4. The figure shows variables M (fuel mass
in the tank) and T (fuel temperature in the tank) as a func-
tion of time. These simulations are just reported to provide
an understanding of how the system works and the effect
of a decreasing fuel level on the fuel temperature. At the
same time, simulation traces can provide insights on how
to abstract certain parts of the system. For example, the
take-off and ascending phases account for a small fraction of
the mission and could be abstracted away. It is interesting
to observe also how the fuel temperature increases accord-
ing to a non-linear law. However, for the first 3000 seconds
the temperature profile appears to be fairly linear. Thus,
it would be possible to approximate the fuel temperature
dynamics by a clock variable Ṫ = c, for t ∈ [0, 3000], where
c needs to be determined.

Figure 5.c shows the marginal probability distributions for
the mass(M) and temperature (T ) variables at the end of
the mission computed using the reachability algorithms in
USHVER . The discretization parameters for this case study
can be found in [12]. The generation of the reachability
results required roughly half an hour on a laptop with a
Intel Core2 Duo CPU P9400 running at 2.40 GHz, and 2.95
GB RAM. Up to 3 million states were generated by the
reachability computation.

6. CONCLUDING REMARKS
We have developed a tool called USHVER that allows mod-
eling DTSHSs and performing simulation and analysis using
different tools. We have used USHVER on a model of
a thermal management system with 5 continuous variables
and 7 modes. There are practical limitations in the adoption
and use of the techniques and tools presented in this article:

• The size of systems that can be analyzed seems to be
limited. The complexity arises from the branching fac-
tor in Algorithm1 which depends on the dynamics of
the system and on the nature of the uncertainty.

• The technique used in USHVER provides some guar-
antees (see [8] for a review). However, explicit error
bounds between the approximate probability measure
and the real ones are not always available. The error
depends on the selection of the partition and on the

way in which the probabilities of the Markov model are
computed. The user of USHVER may have to rely
on empirical estimates to judge when the computed
distributions are acceptable and stop refining the dis-
cretization grid. This is a limitation counterbalanced
by the possibility of modeling general dynamics. The
availability of other tools such as the Sequential Prob-
ability Ratio Test can also help in validating reacha-
bility results and guiding the user in assessing their
quality.

• The finite partition is assigned manually and is uni-
form in each mode. This is an important limitation
that impacts the adoption of the tool, the complexity
and the quality of the results.

• The adoption of USHVER has been limited to inter-
nal research projects within the United Technologies
Research Center. There are several adoption barriers.
Stochastic hybrid system models of realistic systems
are too complex for probabilistic analysis. The use of
tools such as USHVER requires an initial step where
an abstract model is constructed. The development
of such model requires knowledge of the verification
methods and of the system at the same time. This
combination of skills is often difficult to find.

Areas for improvement for USHVER include the automatic
generation of the grid and the computation of confidence
bounds for the results generated by the reachability algo-
rithm for which we could leverage the work in [3].
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