
TrustForge: Flexible Access Control for VehicleFORGE
Collaborative Environment

Sponsored by Defense Advanced Research Projects Agency
Tactical Technology Office (TTO)

Program: VehicleFORGE – University of Pennsylvania
Issued by DARPA/CMO under Contract No. HR0011-11-C-0096

Final Report∗

November 3, 2012

1 Introduction

Flexible manufacturing, based on the extensive use of models and model-based analysis, is
promising to revolutionize the way we build equipment. The use of models can improve
outcomes and reduce costs of designing and building complex machinery by thoroughly ex-
ploring the design space and selecting the approach that matches the requirements best,
eliminating the need for expensive prototypes. Furthermore, the use of models can dramat-
ically lower the barrier of entry for small companies and even individuals, who will be able
to bring fresh ideas to the table. Ultimately, designs can be collaborative design, scores of
participants would design models according to common requirements. This is the vision of
the Adaptive Vehicle Make [1], a portfolio of programs run by Defense Advanced Project
Agency (DARPA) with the goal of applying collaborative design, model-based engineering
to the design of military vehicles. The idea is to leverage the talents of the wider world,
rather a few select contractors to build next-generation military equipment. The success of
collaborative design software platforms such as Linux, Firefox and Apache that use a similar
model have paved the way for migrating the basic approach to military systems.

In this report, we present TrustForge, an autonomous, dynamic and flexible access control
mechanism for collaborative design component-based systems. TrustForge is part of a larger
repository, VehicleFORGE, that stores the various contributions made by the users. The
users interact with the repository, which itself uses the TrustForge to make access control

∗The views expressed are those of the TrustForge team and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

1

decisions, thereby allowing or disallowing users from performing certain tasks. In this regard,
the repository provides TrustForge with meta-data on users and their components which is
then used by it to compute the trustworthiness of the components and their contributors
(i.e., users). Traditional trust management approaches rely on credentials that are assigned
to participants by trusted authorities. Such approaches rely on cryptography and give precise
guarantees that only participants with the right credential can gain access to the repository.
On the other end of the spectrum are reputation-based approaches that are based on prior
interactions between the participants in the collaborative environment. In such approaches,
participants report their experiences to the system that keeps track of problematic users.
The quintessential reputation-based system is implemented by eBay, where buyers and sellers
report on the outcome of transactions.

Both purely policy-based or reputation-based approach does not meet the needs of a de-
velopment environment. Policies provide the ability to credential user and authorize them to
access the system. Credentialing, or establishing the authority to contribute to the projects,
is essential in collaborative design environments especially given the diversity of partici-
pants. The credentialing of users is a particularly challenging task in collaborative design
environments because: (1) the identity of the participants may not be directly known to
the project management, (2) the strictness of access control needs to be flexible depending
upon the criticality of the project, (3) the scale of the enterprise in terms of the number
of participants and projects and their components. Today’s collaborative design software
platforms perform much of the credentialing manually. It is therefore not surprising that
credentialing in such scenarios tends to be a slow and time-consuming process, which pro-
vides considerable barrier of entry for new participants or the introduction of newer ways of
building such platforms. Similarly, reputation systems, such as those used by eBay, based
on direct user feedback on other users are susceptible to attacks, in which malicious users
deliberately provide bad feedback on good users to drive their reputation down. At the same
time, malicious users can collude with other malicious users to provide good feedback to each
other, boosting reputation.

With TrustForge, we are therefore staking the hybrid approach for access control that
allows us to incorporate constraints on user reputation in a access control policy. Reputa-
tion becomes one element in the array of attributes that the user has. Examples of others
attributes may be the citizenship status and the number of years of relevant experience,and
so on. In order to maintain reputation values, TrustForge periodically recalculates user rep-
utations based on the history of interactions between the user and the repository. In order to
protect the reputation scores from attacks based on malicious feedback, similar to the ones
described above, the feedback in TrustForge is based on the objective information, rather
than on subjective opinions of other users. The intuition for the feedback sources are as
follows. Since we are primarily concerned with the quality of the components that a user
submits to the repository, the reputation of the user is based on the reputation of the sub-
mitted components. The most objective assessment of component quality is through testing,
simulation, or other analysis method. However, testing must be performed by trusted users,
who are by necessity a minority of users. Therefore in a large repository, only a small frac-

2

tion of components can be tested with sufficient confidence. Moreover, testing or simulation
results, typically, do not give complete confidence. We supplement test results with the in-
formation about how components use each other. If component A is used by a large number
of components with high reputation, it means that contributors of those components found
A acceptable, which gives us additional confidence in the trustworthiness of A.

Even though this work was done in the context of the Adaptive Vehicle Make project.
We will keep our discussion more general and present the conceptual aspects of our system
and its implementation. The TrustForge architecture is general enough to be used with any
collaborative design application, as long as the repository provides it the inputs it requires
about the users and the components they create.

This report is organized as follows: Section 2 presents the TrustForge system is detail
including the policy engine, data model for storage and reputation function. Section 4 then
presents performance analysis results for TrustForge including our simulation setup. In
Section 5 we conclude.

2 The TrustForge System

Given the design goals, in this section, we provide an overview of the TrustForge system
architecture including the policy engine, the data model for storing user and component
meta-data and relationships, the reputation function, the TrustForge API and its implemen-
tation.

2.1 Policy Specification and Evaluation

We use the KeyNote trust management language for specifying these access policies in Trust-
Forge. KeyNote is a declarative language describing relationships among principals and
evidence that permits principals to perform certain actions [2]. These relationships are spec-
ified as policies. If cryptographically signed these policies can be viewed as a credential.
KeyNote credentials and policies are known as assertions. When a trust inquiry is made,
users present a set of cryptographically signed policies (i.e., credentials) along with the de-
sired action they wish to perform. The KeyNote compliance checker evaluates this input and
returns a Compliance Value (CV) in a linearly ordered set, between an application specified
minimum compliance value and maximum compliance value. In the simplest case, the set of
compliance values can be {DENY,ALLOW}. CV is then used to make the access control
decision.

A KeyNote policy has three primary components; the Authorizer, Licensees, and Con-
ditions fields. The Authorizer field is the principal delegating trust, who is issuing this
assertion. KeyNote provides a special Authorizer, POLICY, that is the root of all trust. Valid
delegation chains must emanate from POLICY. The Licensees field states to which principal(s)
the Authorizer is delegating trust to, and it also expresses from whom delegation chains must
be present. It is written as a logical statement of AND/OR operators between principals.
The logic of the Licensees field also describes how CVs are combined to form a single output.

3

Figure 1: A Sample TrustForge Policy

The MAX function is applied to OR delegations and the MIN function to AND ones. Finally,
the Conditions field permits comparison using context associated with the access request.
Conditions are written as propositions, which when true imply a CV. When more than one
value is implied, the maximal one is used as the returned CV. Provided this specification,
one can now determine a CV for an entire delegation chain. First one computes CVs via the
comparisons of the Conditions field for all credentials in the chain. These are then combined
up the chain using MIN/MAX until the root node (POLICY) is reached. This final CV is
then returned to the application.

The Conditions field is allows us to specify constraints on the application of a credential.
A credential can be used to delegate only a specific privilege to the Licensees; for example,
a credential may be allowed to check out components from the repository, but not add
new ones. In this case, the Conditions field would include a predicate that compares the
requested action to the permitted action. Similarly, access may be restricted to users who
are not subject to ITAR restrictions, and the predicate in the Conditions field would evaluate
the appropriate attribute in the user’s record.

4

Measured Reputation (t, c) Default Reputation (f)

Reputation

Figure 2: The Representation of Reputation in TrustForge

An example of a policy specification that takes reputation into account is shown in
Figure 1. It can be seen that KeyNote is expressive enough satisfy our design goal of being
able to specify an application-specific policy. For example, we use the Conditions field to
include reputation values into policies. Here, predicates in the Conditions field allows us to
specify constraints (typically, lower bounds) on the reputation values that are necessary for
access. The figure shows a policy that allows any user (denoted by the * symbol in the users
field), who has reputation above 0.75, to check in new components, check out components,
and delete them, but not edit existing components. Almost any other attribute-value pair
can be added to the policy language in a similar manner.

2.2 Reputation Function

In order to keep the policies specified in KeyNote evolve, we use the notion of user reputation
computed based on their contributions to the projects in the repository. Therefore reputation
mechanism in TrustForge is basically identifies high-quality components and high-quality
contributors. The design of reputation system is takes into account the presence of malicious
users who may want to bias the reputation mechanism (i.e., increasing their own reputation
or decreasing the reputation of other users) by either introducing erroneous feedback or
taking advantages of the loop hole of the reputation algorithm design. In this section, we
will discuss our design of an effective reputation mechanism, which is also robust to potential
attacks.

2.2.1 Reputation Representation

In TrustForge, the reputation of components and users is denoted as a three-dimension vector
(t, c, f) by adopting the CertainLogic representation [7]. CertainLogic provides a novel model
for the evaluation of the trustworthiness of complex systems under uncertainty, which is also
compliant with the standard probabilistic approach. As shown in Figure 2, the first two
dimensions (t, c) is called measured reputation (t is the measured value, c is the confidence
value), which encodes the reputation value computed based on direct feedback. Meanwhile,
the third dimension (f) is called default reputation, which encodes the reputation value
computed based on indirect evidence or inference. Furthermore, two operators are defined
for the reputation vector following the semantic of CertainLogic:

1. Fusion operator, which merges several reputation vectors into one. The detailed defi-
nition of the fusion operator is shown in Figure 3:

5

ttB

tcB

tfB

Figure 3: CertainLogic Fusion Operator

Fusion(A1, A2, . . . , An) = (tB, cB, fB)

2. Expectation operator, which computes a scalar reputation value based on the vector
representation:

Expectation(A) = tA ∗ cA + (1− cA) ∗ fA

2.2.2 Design of the Reputation Function

With the understanding of the reputation representation, we now describe the reputation
algorithm used by TrustForge. We started by identifying all the feedback information source
available, which can be used to evaluate the trustworthiness of user and the quality of compo-
nent. For each feedback information source, we further identity a suitable algorithm, which
can be used to infer the trustworthiness of components and users based on the corresponding
feedback type. These algorithms serve as the basic building blocks. By properly combining
them, we design a hierarchical algorithm that generates final reputation for both users and
components as shown in Figure 4.

Feedback and Information Sources In total, we identified four independent feedback
information sources for reputation computation, namely:

1. Test Evidence: The qualitative or quantitative test results on how well components
satisfy their corresponding requirements.

6

Default Reputation (f)

+

Inheritance &

Utility Graph

PageRank (t)

Hitting Time (c)

Test-based

Distribution

Estimation (t)

Test of

Significance (c)

Inheritance &

Utility Graph

Provenance

(User-

Component)

Past

Reputation

History

+

Measured Reputation (t, c) Default Reputation (f)

+

Provenance

(Component-

User)

Past

Reputation

History

Component Reputation User Reputation

E E

+

Measured Reputation (t, c)

Figure 4: TrustForge Reputation Algorithm Overview

2. Component Utility & Inheritance: The information on how the components are reused
as building block to compose more complex components, and how properties and de-
signs of components are passed to other components.

3. User-Component Provenance: The information on components and their corresponding
contributors.

4. Revision History: The information on how component and user reputation evolves over
times.

All the feedback information is stored in the data model as discussed in previous section.

Component Reputation Calculation Figure 4 shows the skeleton and information flow
of our reputation algorithm design, where nodes with the + and E symbol corresponds to
the fusion and expectation operator, respectively. To compute the measured reputation of
component, we have designed two basic building blocks:

1. Inheritance & Utility Graph: This building block uses the graph of component inheri-
tance and utility relationships based on the assumption that if a component is highly
used or inherited by other components in the system, then it is of high-quality. The t
value is computed based on PageRank algorithm [6] over the graph of inheritance and
utility links between components. The c value is assigned based on a graph hitting
time algorithm [3], which can prevent malicious users from adding meaningless links
in the graph to unfairly increase their reputation.

2. Test-based: This building block is based on test evidence. The idea is that by us-
ing qualitative or quantitative tests, one can properly measure how well a component
satisfies its requirements. The t value is computed based on statistical distribution
estimations of the test evidence to get the probability of requirement satisfaction by
a component. The c value is computed based on the test of significance of the corre-
sponding statistical estimator.

7

The value computed by these two building blocks will be merged using the fusion oper-
ator to get the measured component reputation. Further, in order to compute the default
reputation of component, we have designed three building blocks:

1. Inheritance & Utility Graph: This building block uses the same component inheritance
& utility graph, but focuses on the out-going links instead of in-coming ones as in the
computation of measured component reputation. The idea here is that if a component
inherits or reuses code/design from other high-quality component, then this component
is more likely to be of high quality, and vice versa. To compute this building block, we
will fetch the measured reputation of all the components from which one component
uses or inherits code.

2. Revision History: This building block uses the revision history information of compo-
nents. The assumption is that if a component is high-quality in the past revisions, it
will still be high-quality in the future, and vice versa. To compute this dimension of
reputation for a component, we will fetch its past measured reputation values.

3. Provenance (User-Component): This building block uses the provenance information
between a component and its contributors. The idea is that high-quality components
are contributed by trustworthy users, and vice versa. To compute this dimension of
reputation for a component, we will fetch the measured reputation of all its contribu-
tors.

The reputation values fetched by these three building blocks will be merged using the
fusion operator. The default reputation of component is the expectation value of the aggre-
gated value.

User Reputation Calculation The measured user reputation is computed using the
provenance information between a user and all the components he/she has contributed to.
The assumption here is that high-quality components are contributed by high-quality users,
and vice versa. To compute this dimension of reputation, we will fetch the measured repu-
tation of all components a user has contributed to, and merge these values using the fusion
operator.

To compute the default reputation of user, we use the revision history information. The
assumption is that if a user contributed high-quality components in the past revisions, he will
keep doing so in the future, and vice versa. To compute this dimension of user reputation,
we will fetch historical measured reputation of a user, merge these values using the fusion
operator, and take the expectation of the aggregated value.

Once the reputation values have been calculated, they are plugged into the KeyNote
policy and the access control decisions are made for the individual users.

2.2.3 Attack model and defense strategies

Thus far, we have described on the basic reputation algorithm design used by TrustForge.
By using quite extensive feedback information and properly combining them together, the

8

reputation algorithm can effectively identify high-quality components and trustworthy users.
Here, we will look at its robustness. The problem we are trying to address here is that
malicious users may manipulate the reputation mechanism by introducing biased feedback
information. Therefore, we need to identify potential attacks to the our reputation algorithm,
and design proper defense mechanism as protection.

We first enumerate the attack models being considered in the TrustForge system. In
summary, an attacker want to unfairly boost his own reputation or decrease the reputation
of benign users, in order to grant more access privileges. Attacker can only achieve the
goal by injecting biased information into the TrustForge system to mislead the reputation
algorithm. Concretely, we have:

1. An attacker may introduce “dummy components” and “spamming links” into the util-
ity and inheritance graph to unfairly increase the popularity of the components con-
tributed by the attacker. So that the PageRank value of the attacker’s components
will increase, and the PageRank value of other’s components will decrease.

2. An attacker may submit false evidence to show that his components satisfy the cor-
responding requirements, or to show that others’ components fail to satisfy the corre-
sponding requirements. As the result, the “test” dimension of the component reputa-
tion will change in favor to attacker’s components.

As the countermeasure to the first type of attack, we compute a hitting time instead of
the classic PageRank value as the countermeasure. As proved in [3], the introducing of out-
going spamming links won’t increase the reputation of the attackers by using this defensive
approach. To defense the second type of attack, we specify trust policies to only allow a set
of predefined truthful users to submit test results by given them curate privilege.

Furthermore, we assume that for the CertainLogic operators adopted in TrustForge, if
the operant values are truthful and the operation is performed by truthful entity (in this
case, TrustForge), then the result is also truthful. Section 4 provides a more detailed analysis
of TrustForge reputation function performance and demonstrates that it satisfies our design
goals of being and robust.

2.3 TrustForge Data Model

In order to perform calculation of reputations, TrustForge needs to store certain metadata
about the repository. This metadata is designed to capture three key aspects: the provenance
of the objects in the repository, i.e., who contributed them and who made modifications to
them; the usage of the components, e.g., as subcomponents of other components; and any
test results.

TrustForge captures provenance information implicitly by observing checkins. Analogous
to other version control systems, users can check in new objects, modify or delete existing
ones, and create or merge branches. Based on these checkins, TrustForge builds a kind of
“family tree” for each object in the repository that describes all the modifications that were

9

made during the object’s lifetime, as well as the corresponding time and the user who made
them. A similar “family tree” at the component level captures usage and inheritance.

Since both provenance and usage are inherently graph-structured, the decision was made
to store the data as a graph, rather than in a relational database. The graph contains a
vertex for each user, component, and checkin, as well as for each of an object’s revisions; the
edges describe relationships between vertices – for instance, that a particular revision was
created by a specific checkin, or that a given component is part of another component. Test
results are not part of the graph; rather, they are represented as annotations to particular
vertices.

2.3.1 Vertices and edges.

TrustForge’s data model contains four types of vertices – user, component, checkin, and
object – as well as five types of edges:

• A derivedfrom edge connects an object revision to other object revisions1 from which
it was derived;

• A ispartof edge connects an object revision to the checkin that created it;

• A belongsto edge connects a checkin to the component to which it was applied;

• A performedby edge connects a checkin to the user that performed it; and

• An issubcompof edge connects a subcomponent to its parent component.

The provenance-related vertices and edges are created automatically after each checkin.
When user U checks in modifications to some objects o1, . . . , ok of a component C, TrustForge
creates a new checkin vertex vc and k object vertices vo,k, one for each modified object;
it then creates an ispartof edge from each vo,k to vc, a belongsto edge from vc to C, and
a performedby edge from vc to U . The vertices are then annotated with some metadata,
e.g., a revision number. The usage edges and the annotations for test results are created
manually, in response to user actions.

Note that the graph is append-only: existing vertices and edges are never modified or re-
moved. This is a security feature: since information is never lost, dishonest users have no way
to remove telltale information. Of course, this means that TrustForge’s storage requirements
will grow over time, but they will not grow faster than those of the underlying repository,
which never deletes past revisions either. If necessary, old revisions can be removed manually
by the operators.

2.3.2 Query language.

Although the primary function of the graph is to provide the input for the reputation function
in Section 2.2, we expect that it will have other uses – e.g., to perform forensics when bad

1When branches are merged, the resulting objects are derived from their counterparts in each branch.

10

derivedfrom

derivedfrom

Component

"Engine"

Component

"Truck"

Object

"Valve" (v3)

Object

"Valve" (v2)

Object

"Valve" (v1)

Object

"Gear" (v2)

Object

"Gear" (v1)

Object

"Wheel" (v2)

Object

"Wheel" (v1)

Checkin 3

Checkin 2

Checkin 1

Checkin 2

Checkin 1

User

"Alice"

User

"Bob"

User

"Charlie"

issubcompof

b
e
lo

n
g

s
to

belongsto

performedby

performedby performedby

ispartof

ispartof

ispartof

d
e
riv

e
d

fro
m

performedby

Figure 5: The TrustForge data model. This simple repository contains two components, a
truck and its engine, which were contributed by Alice, Bob, and Charlie.

contributions are discovered, or to search for potential contributors for a new project based
on the users’ prior expertise. Furthermore, TrustForge’s reputation function may evolve over
time, e.g., to support new types of tests or new kinds of contributions. Therefore, instead
a hard-coded interface to the graph, TrustForge contains a general-purpose query language
that can be used to formulate a wide variety of queries.

TrustForge’s query language is an extension of ProQL [5, 4], a query language that was
specifically designed for provenance graphs. ProQL queries use a path expression syntax:
each query describes a set of paths in the TrustForge graph, and then performs some com-
putation on those paths. For instance, we might be interested in the “impact” a given user
U has made on the repository so far. We might then describe the paths that start at U ’s
vertex, traverse the performedby and belongsto edges to reach the an object revision U
has contributed, then traverse potentially multiple belongsto and issubcompof edges, and
finally terminate at some component C that (perhaps transitively) uses that revision. We
might then weight each path based on the magnitude of the revision and the reputation of
the component C, and finally aggregate the contributions from the different paths.

The original ProQL language did not support iterative computations similar to PageR-
ank, which is an important building block in TrustForge’s reputation function. Therefore,
we extended ProQL with a repeat...until construct (which can express the iteration and
its termination condition) as well as with support for propagation and adjustment of ver-
tex annotations (which can carry the page ranks). With these extensions, we can express
the entire PageRank computation in a short ProQL query, thus meeting our design goal of
having a efficient data engine. A more detailed description of these extensions is available
in [4].

11

2.4 Interface to Component Repository

We have implemented TrustForge as an independent stand-alone entity that interacts with
the component repository through a set of standardized APIs. The purpose of the APIs
is two fold: (1) to collect information from the VehicleFORGE repository about the users
within the system and the components they contribute; and (2) to expose the capabilities
of TrustForge for the repository to use, such as specifying access policies and making access
control decisions. Note that, TrustForge by itself is not the system-of-record for component
and user attributes (except reputation). It only stores a copy of the information. Further,
TrustForge is not an outward facing system. It therefore does not implement any security
features for the APIs as the assumption is that all the access to TrustForge APIs will be
filtered through the VehicleFORGE repository. All data exchanged between TrustForge and
VehicleFORGE is in textual format. We use the JSON format2 for data exchange due to its
lightweight nature and ease of use. We create a simple REST API for accessing TrustForge’s
capabilities for VehicleFORGE. For each of the API calls, we specify the JSON schema of the
messages exchanged, and the specific URL to which the call needs to be made.

In general, the interaction between TrustForge and VehicleFORGE repository through the
API can be classified into two categories: information insertion and information extraction.
Information insertion into the TrustForge takes the form of: (1) INS1: updates regarding
changes in the repository elements such as projects, components and their interconnectivity
in terms of mutual usage, (2) INS2: updates regarding the results of tests conducted on
the components as evidence of satisfying the underlying requirements, (3) INS3: updates
regarding new users who have joined VehicleFORGE, including attributes such as identifica-
tion, citizenship, location and so on, and (4) INS4: updates regarding access control policies
active within a project. Similarly, information extraction from the TrustForge is in the form
of: (1) EXT1: access requests asking for permission to perform a specific task by a user
(returns yes/no response), (2) EXT2: queries related to the policies associated with the
various projects in VehicleFORGE, and (3) EXT3: queries the reputation values of entities
involved.

The TrustForge API document gives more details about the JSON schema that goes
with each of the API calls. Each INS API call returns a 201 HTTP message for each of
the INS APIs. It returns a 401 code if the task is unauthorized and 404 if the URL is not
found. The TrustForge system also returns specific warnings back with the 201 message in
case something untoward is observed, for example circulation delegations. For the EXT API
calls, a 200 HTTP message to demonstrate successful query. Other codes remain the same.
The following is the list all the APIs that are provided by TrustForge and the categories
they fall into.

• TrustForge update-feedback(update) [INS1/INS2] : The TrustForge expects up-
dates about components to be pushed to it. This API primarily deals with populating
the data model for reputation computation. Updates can be of three types: specifying
component changes, specifying component test result, and specifying component use

2http://tools.ieft.org/html/draft-zyp-json-schema-02

12

relationships.

• TrustForge update-user-default(user id,[attrib name,attrib value]) [INS3]:
This API is used to provide information to TrustForge about a new user including her
userid, and a name value pair of attributes such as [citizen, US] and [itar, yes].

• TrustForge policy-update(user id,lic id,proj id,cred name,conditions,prior)

[INS4]: This API allows a user to create and update the policy associated with a
project, project id. Policies physically manifest themselves as delegations (from project
manager to users and then further on). There can be multiple such delegations from
project managers and other users, associated with a project. Each delegation results
in the creation of a KeyNote credential with a unique ID within the project. Here, the
user id specifies the authorizer, the lic id specifies the licensee, cred name specifies
the name of the delegation, and conditions specify the context in which the delegation
acts.

• TrustForge access-request(areqid,user id,comp id,proj id,cred list,access type)

[EXT1]: This API checks to see if a user with user id can obtain access of access type
(credential < create, read, write, delete, curate >) on a component, comp id, within
a project, proj id, and returns a yes/no answer. The attribute cred list is used to
determine which delegation(s) associated with the project policy is (are) used in the
access request. The attribute areqid is used to uniquely identify the access request. It
is the responsibility of repository to match the response returned to the request sent.
Note that, search does not require a separate privilege.

• TrustForge policy-query(pqueryid,proj id,qtype,user id) [EXT2]: This API
determines the policy (list of all credentials) associated with the project, proj id pro-
vided the user, user id belongs to the authorizer or licensee (specified by the qtype
element). The credential could be a result of issuing project wide policies as a pro-
gram manager. They could also be generated a result of a user delegating components
within a project to others. The attribute pqueryid is used to uniquely identify the
policy query request. Returns a list of credentials.

• TrustForge delegation-query(dqueryid,cred name) [EXT2]: The API returns the
details of a delegation, given its unique id as specified by the variable cred name
(delegation credential name). This is usually used to modify the policy of a project.

• TrustForge log-query(plogqueryid,user id,proj id, query) [EXT 2]: The API
allows the querying of the logs (policy log, component modification log, access log)
maintained for project identified by proj id. The query is authorized only if the user
with user id has project manager privileges. The response to the query is expected
to be an array of attribute-value pairs. The attribute plogqueryid is used to uniquely
identify the log query request.

13

Figure 6: Architecture of the TrustForge implementation

• TrustForge query-userrep(user id) [EXT3]: This API allows the querying of the
reputations of a user, given by user id.

• TrustForge query-comprep(comp id) [EXT3]: This API allows the querying of the
reputations of a component, given by comp id.

3 TrustForge Implementation

We have implemented the design outlined in the preceding sections as a web service. The
service is running on Linux and deployed using Amazon EC2 virtual machines. The use of
virtual machines allows us to easily deploy multiple instances of TrustForge as needed.

The architecture of the TrustForge implementation is shown in Figure 6. The web inter-
face is implemented in python and is running within an Apache web server. Policy updates
and queries are handled by an off-the-shelf implementation of the KeyNote engine. Policies,
as well as user attributes and reputation values that are used by KeyNote in policy evalua-
tion, are stored in a MySQL database. Relationships between components in the repository
are stored as a graph in a separate graph database. The graph is queried using a ProQL
query language. The ProQL engine is implemented in C++ over the BerkeleyDB storage sys-
tem that keeps the graph database. Finally, the reputation algorithm, implemented in Java,
uses ProQL queries to extract the relevant information from the graph database, performs
calculation of user and component reputations and updates the reputation database.

14

4 TrustForge Evaluation

Now that we have described TrustForge, in this section, we will evaluate its capabilities in
terms of differentiating the good users and components from the bad ones. In this regard, we
first present a simulation based test-harness for TrustForge and then present the performance
analysis results obtained.

4.1 System-in-the-Loop Simulator

In order to test the efficacy of the TrustForge policy engine and the reputation computation
and fine tune its performance we built a simplified VehicleFORGE simulator. The purpose of
the simulator is to mimic the basic capabilities of the VehicleFORGE repository in terms of
providing the TrustForge with updates on the users and their components, specifying policies
and performing access control. This system-in-the-loop approach allows us to evaluate and
tweak our system to achieve the goal of increasing the contribution of good components
while decreasing poor ones within the VehicleFORGE repository. Consequently, the principal
capabilities of the simulator that we are therefore looking for are: (1) ability to exercise the
APIs provided by TrustForge, (2) ability to provide updates regarding components and their
inter-connections, (3) ability to add tests results to components, and (4) ability to simulate
various user types with varying degrees of maliciousness.

Conceptually, one can imagine the simulator system to be trying to enable introduction
of components and assemblies of components within a component exchange or repository.
Assume there are three users within the system U1, U2, U3. Each user has one or more
(atomic or composite) components that it has contributed to the system. Assume U1 has
contributed 1 : X, 1 : Y and 1 : Z, U2 has contributed 2 : V and 2 : A, and U3 has
contributed 3 : X, all of which are atomic. Note that, 1 : X and 3 : X are components built
to the same specification, just by two different users. Now assume U2 wants to introduce a
new composite component 2 : P into the system. Now 2 : P requires the use of component
X already in the system. In order to do that, it first reads one of the two X components
(namely, 1 : X and 3 : X) available with in the repository, decides which one meets its
requirements, uses it to construct 2 : P and then finally introduces 2 : P into the repository.
The purpose of the simulator, in the simulator-TrustForge interaction, is to execute this very
process using dummy components, while the task of the TrustForge is to accept of reject
them pursuant to the policies currently active for the project within it.

4.1.1 System description

The Figure 7 illustrates the simulator system and its workflow, which moves from left to
right. The simulator is designed on the principal of using traces, where a trace specifics up-
front all the actions with respect to users and their components. The trace can be thought
of as a pre-defined scenario with specific characteristics that is executed on TrustForge. This
allows us to test the various functionalities of TrustForge and tweak it, while keeping the
underlying context of operation static. The first step in the generation of a trace is the Type

15

Type Hierarchy
Generator

Type
Hierarchy

Params

Simulator Trace
Generator

Trace File

TF-Interface

Results
Analyzer

Output
Statistics

User Behavior
 Model

Component Test
Generator

TF	 API	
Repository	 updates	

TF	 API	
Reputa3on	
Query	

TrustForge
TF	 Policy	 +	
Access	 Control	
API	 calls	

Figure 7: TrustForge Simulator System

Hierarchy Generator (THG) on the very left is where the figure. The THG takes as input the
number of nodes and edges and generates an acyclic graph, known as the type hierarchy, that
provides list of all the components, their different versions that will be used in the execution,
along with the underlying components for component assemblies. Therefore an entry of the
form“0[3]: 1, 2” indicates that the version three of component zero is a component assembly
and will require component 1 and component 2. At least one instances of both component
1 and 2 will have to be available within the repository for TrustForge to permit a user to be
able to successfully add component 0[3] to the repository.

4.1.2 Trace Files

The type-hierarchy is then used to generate a trace-file that lists a series of actions to be
taken during that execution of the simulator, using the Trace Generator (TG) component.
The TrustForge takes a number of parameters including — the number of users within the
system, the types of users, and the number of transactions to be executed within this run.
It then generates a list of component addition actions to the repository. There are as many
entries as the number of transactions specified as input for the simulator. Entries in the
trace-file are of the form (U,C[v]), where U is the user and C is the component name and
v is the version. Therefore an entry of the form (X, 0[3]) mean that userX wants to add
a component0 at version2. Another type of entry in the trace-file is the test result for the
components already in the repository. The simulator allows any user to contribute test results
to the components in the system. The Component Test Generator (CTG) is responsible for
adding the test entries in the trace-file. The entries for this are prefaced by the string ‘T!’
in the trace-file. The test results are provided in the (t,c) format used by CertainLogic as
described in Section 2.3. We assume that all tests are done at 95% confidence level which
forms the ‘c’ value, while the ‘t’ value is randomly generated and approximates the ground-
truth value of the component. The ground-truth is of course known to the simulator. Every
component added to the system has a ground-truth value between 0 and 1. This value

16

User Type % of Good Intro. Component Choice

Good 100% Best

Purely Malicious 0% Worst or Own

Malicious Provider 0% Random

Disguised Malicious 50%-100% Random

Figure 8: TrustForge Simulator User Behavior Model

indicates their trustworthiness. Good components have values close to 1 and bad ones have
values close to 0. If a good user is providing test results, then ‘t’ value associated with the
test will closely approximate the actual ground truth, while in the case of designated bad
users providing test results, the ‘t’ value may vary.

4.1.3 User Behavior Model

This brings us to the user model that is used by the simulator. From the previous discussion
it can be seen that not all users adding components and tests with the system are good. By
good we mean contribute high quality (reputation value close to 1) atomic components, use
high quality base components for component assemblies. It is possible that the VehicleFORGE
system has some potentially malicious users who try to add poor quality (low ground-truth
value) components to the system and try to maintain high reputations values for themselves
and their components. The idea behind the use of TrustForge is to be able to clearly
distinguish such users and their components from the good users, who follow the rules.
In this regard, we have designed a user model that captures various types of bad users.
When simulator trace-file is generated, a pre-specified number of bad users are generated
by the simulator. The table below shows the various types of bad users. Each user in this
model has two properties with respect to adding atomic components (% of good components
introduced) and choosing base components for adding component assemblies (chosen base).
The good user adds good quality components 100% of the time, while choosing good base
components. A purely malicious user does the exact opposite. A disguised malicious user
only adds good components between 50%-100% of the time to disguise its maliciousness. We
use the normal distribution to determine the probability of adding good components in a
particular transaction for the disguised malicious users. Figure 8 illustrates the user model
used by the simulator.

4.1.4 Execution

When executing an entrain the trace-file, the simulator calls the Tf access-request API
to first check to see if the user can ‘create’ a component to the repository. If possible,
then it makes more access queries to the to see if instances of base components are present
with the system and if so, does the user have ‘read’ access to them. The simulator then

17

chooses a version each of the base components that is most conducive to the user, based
on the underlying behavior model. For example, if the user is purely bad then it will try
to choose its own or other poor quality base components. This improves the utility of bad
component being used as the base, thus increasing their reputation and that of their authors.
The simulator then sends an update to the TrustForge (through the Tf update-feedback

API) regarding the addition of the new component and its links to chosen instances of the
base components to be stored in the ProQL database. When executing the test entries for
components, the simulator first calls to Tf access-request API in TrustForge to first check
to see if the user can ‘curate’ a component to the repository. Test results are only accepted
if the ‘curate’ privileges are available to the user. As the various transactions are being
executed, the simulator using the Result Analyzer, from time to time, queries the reputation
value of the components and users from TrustForge using the TrustForge query-userrep

and TrustForge query-comprep API calls. These values are recorded and made available
for further analysis.

4.2 Evaluation results

To exercise the simulator and the TrustForge infrastructure discussed in previous sections,
we conduct experiments to evaluate the effectiveness of combining the policy and reputation
perspectives for making access control decision. Particularly, we focus on evaluating the
effectiveness of the reputation algorithm and its satisfaction of our design goal of having a
robust reputation function.

4.2.1 Experiment Setup

To setup the experiments, we use the simulator to generate a component type hierarchy
with 50 component-type nodes and 100 “component type to component type” links. For
each experiment, we ran it over at least 1000+ revision iterations. And for every 10 revision
updates, we re-compute component and user reputation based on the reputation algorithm
discussed in Section 2.2. These configurations are fixed across the series of experiments
we conducted. On the user side, we vary the percentage of different user types among
user community (detailed user behavior models discussed in Section 4.1.3). For disguised
malicious users, we set their probability of contributing good components to be 50% in
most of the experiments, unless otherwise notified. At most 50% of good users are given
curate privilege to submit test results, and we also vary the size of this trusted tester set in
some of the experiments. Tests are generated by such trusted testers for components that are
randomly picked from the repository. The measured trust value of test results is informed by
the ground truth quality of the corresponding components with ±10% error. The confidence
value of test results are uniformly set to be 95%.

18

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801

U
s
e

r
R

e
p

u
ta

ti
o

n

Reputation Computation Iteration

Reputation Trend w/ 70% Good User

Good User Pure Malicious Malicious Provider Disguised Malicious

0.7

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

U
s
e

r
R

e
p

u
ta

ti
o

n

Reputation Computation Iteration

Reputation Trend w/ 40% Good User

Good User Pure Malicious

Malicious Provider Disguised Malicious

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

U
s
e

r
R

e
p

u
ta

ti
o

n

Reputation Computation Iteration

Reputation Trend w/ 10% Good User

Good User Pure Malicious

Malicious Provider Disguised Malicious

Figure 9: Overall Reputation Trends

19

4.2.2 General Reputation Trends

We first demonstrate the overall trend of user reputation computed by TrustForge. We vary
the percentage of good users in the user community from 70%, 40% to 10%. Meanwhile, the
corresponding percentage of total number of malicious users was increased 10%, 20%, and
30%. We run simulation experiments for each configurations over 8000 revision iterations
(i.e., 800 reputation computations). In Figure 9, we plot the average reputation trends for
different user types over time. For clearer presentation purpose, we plot the full trend for
the 70% good user configuration. For the other two configurations, we only plot the first
1000 revisions (i.e., 100 reputation computations), which is good enough to capture the
characteristics that we are interested in. Using the experiments, we observe that:

• Convergence and Sensitivity: The reputation curves quickly converge to a stable range
for both good and malicious users after 20-30 reputation computation iterations. This
shows that the sensitivity of the reputation function is good enough to capture user’s
behavior.

• Effectiveness: Further, we can observe a clear separation between different user behav-
ior models. That is: (a) Good users often have much higher reputation than malicious
ones; even when the good users are an absolute minority among the users. (b) Among
the three malicious user types, the purely malicious users often get the worst repu-
tation; both malicious providers and disguised malicious users get better reputation
as they demonstrate more trustworthy behaviors than purely malicious ones. These
results demonstrate that the reputation algorithm adopted in TrustForge is effective
and can be used for making access control decisions.

4.2.3 Average Separation

With the overview of the reputation trends in mind, we further conducted experiments to
investigate the reputation differences between good users and each of the three types of
malicious users. In this regard, we created three user communities with good users and one
type of malicious users – (good, purely malicious), (good, malicious provider), and (good,
disguised malicious). For each user community, we vary the percentage of good users from
10%, 25%, 40%, 55%, 70%, 85%, 95%, and record the average reputation of good users and
the corresponding type of malicious users from the 200th to 1000th revision iteration (i.e.,
when the reputation value of user has converged to a rather stable range).

As shown in Figure 10, the reputation margin between good users and malicious users
are wide enough for most of the scenario. Although the margin become narrow as the
percentage of good user decreases within the community, we can still maintain meaningful
margins even when this percentage is 30%. Further, although the malicious users can get very
close reputation to the good users in some scenarios (especially, when malicious users is more
than 85%), the average reputation of good user is still higher than malicious ones. These
results provides very strong evidence that the reputation value computed by TrustForge can
be used as a very dependable metrics for making access control decisions.

20

0

0.2

0.4

0.6

0.8

1
[M: 10 G: 90]

[M: 25 G: 75]

[M: 40 G: 60]

[M: 55 G: 45][M: 70 G: 30]

[M: 85 G: 15]

[M: 95 G: 5]

Average Good User Reputation

Average Purely Malicious User Reputation

0
0.2
0.4
0.6
0.8

1
[M: 10 G: 90]

[M: 25 G: 75]

[M: 40 G: 60]

[M: 55 G: 45][M: 70 G: 30]

[M: 85 G: 15]

[M: 95 G: 5]

Average Good User
Reputation

Average Malicious
Provider Reputation

0
0.2
0.4
0.6
0.8

1
[M: 10 G: 90]

[M: 25 G: 75]

[M: 40 G: 60]

[M: 55 G: 45][M: 70 G: 30]

[M: 85 G: 15]

[M: 95 G: 5]
Average Good User
Reputation

Average Disguised
Malicious User
Reputation

Figure 10: Average Reputation Margin Between Good Users and Malicious Users

-0.16

-0.11

-0.06

-0.01

0.04

0.09

0.14

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

R
e
p
u
ta

ti
o
n
 M

a
rg

in

Reputation Computation Iteration

60% Good Behavior 70% Good Behavior

80% Good Behavior 90% Good Behavior

Figure 11: Minimal Reputation Margin Between Good Users and Disguised Malicious Users
with Various Probability of Exhibiting Good Behavior

21

-0.17

-0.12

-0.07

-0.02

0.03

0.08

0.13

0.18

0.23

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

R
e
p

u
ta

ti
o
n

 M
a

rg
in

Reputation Computation Iteration

10% of Good Users Contribute Tests 20% of Good Users Contribute Tests

30% of Good Users Contribute Tests

Figure 12: Minimal Reputation Margin Between Good Users and Purely Malicious Users
with Various Amount of Tests

4.2.4 Minimal Separation

After a description of the average-case performance of the reputation mechanism, we switch
our focus to the worst-case scenario. That is, we want to understand to what extent malicious
users can game the system. As we see in previous experiments, the reputation margin
between disguised malicious users and good users is the closest, since half of the time such
malicious users demonstrate good behaviors. Therefore, we conduct further experiments by
increasing the probability for disguised malicious users to exhibit good behavior from 50%,
to 60%, 70% or even 90% (the percentage of good users in the community is set to be 70%
in these experiments). Furthermore, we measure the margin between the disguised user who
has the highest reputation value and the good user who has the lowest reputation value. In
this way, we can clearly see the robustness of the reputation mechanism.

We illustrate the trends of this minimal reputation margin between good users and dis-
guised malicious users in Figure 11. As we can see, as the disguised users exhibit more and
more good behavior, essentially the observed behavior pattern of good users and disguised
malicious users becomes very similar to each other. The reputation margin become smaller
and it takes longer times and more informations for the reputation algorithm to discern
the difference. Overall, we believe this result are satisfying, since the reputation margin is
positive for most cases, and even when the disguised malicious users mainly exhibit good
behavior.

22

4.2.5 Reputation under Limited Tests

We further conduct experiments to investigate the impact of the amount of available tests
on the effectiveness of our reputation mechanism. In this experiments, we set up a user
community with 70% of good users and 30% of purely malicious users. We then vary the
size of the tester set, who are good users granted with curate privilege to submit test results,
from 10%, 20%, to 30% of the total good users in the community (ı.e., in contrast to 50%
in our previous experiments). Furthermore, we measure the reputation margin between the
purely malicious user who has the highest reputation value and the good user who has the
lowest reputation value. By giving only limited test results to components, our reputation
algorithm gets much less raw data that is used as the basis for the aggregate and computation
of user reputation.

We illustrate the trends of this minimal reputation margin with limited test result in
Figure 12. As we can see, after a few (about 5 - 20) initial iterations, the minimal separation
between good user and malicious users is maintained. With less test results, the margin
decreases, but is still wide enough for making correct access control decision. The results
shown here provides a strong evidence that our reputation mechanism can work effectively
even with very limited amount of test information. This result is very encouraging when one
considers the application of TrustForge design to other open-source repository environments.

5 Conclusions and Future Work

In this report, we presented a access-control system called TrustForge that enables dynamic
and flexible credentialing for collaborative-design component-based systems. In this regard,
TrustForge automates the credentialing and access control process. It take a hybrid policy
and reputation-based approach to address this problem. The policy language to specify the
credentials for users in the system to contribute components. The reputation scores are then
used to tune the credentials. Our implementation of TrustForge and its evaluation revealed
its capabilities in terms of separating the good users and components from the bad ones.
The next step in this regard would be to obtain real-life data from actual deployment of
the system with the DARPA VehicleFORGE repository and fine-tune the reputation, data
storage and policy engine further.

References

[1] Darpa adaptive vehicle make.

[2] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In
Proceedings of the 1996 IEEE Conference of Security and Privacy, Oakland, CA, 1996.

[3] John Hopcroft and Daniel Sheldon. Manipulation-resistant reputations using hitting
time. In Proceedings of the 5th international conference on Algorithms and models for
the web-graph, WAW’07, pages 68–81, Berlin, Heidelberg, 2007. Springer-Verlag.

23

[4] Zachary G. Ives, Andreas Haeberlen, Tao Feng, and Wolfgang Gatterbauer. Querying
provenance for ranking and recommending. In Proc. TaPP, 2012.

[5] Grigoris Karvounarakis and Zachary G. Ives. Querying data provenance. In Proc. SIG-
MOD, 2010.

[6] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web, 1999.

[7] Sebastian Ries, Sheikh Mahbub Habib, Max Mühlhäuser, and Vijay Varadharajan. Cer-
tainlogic: A logic for modeling trust and uncertainty (short paper). In In Proceedings of
the 4th International Conference on Trust and Trustworthy Computing (TRUST 2011).
Springer, Jun 2011.

24

