http://kapow.cs.pdx.edu/

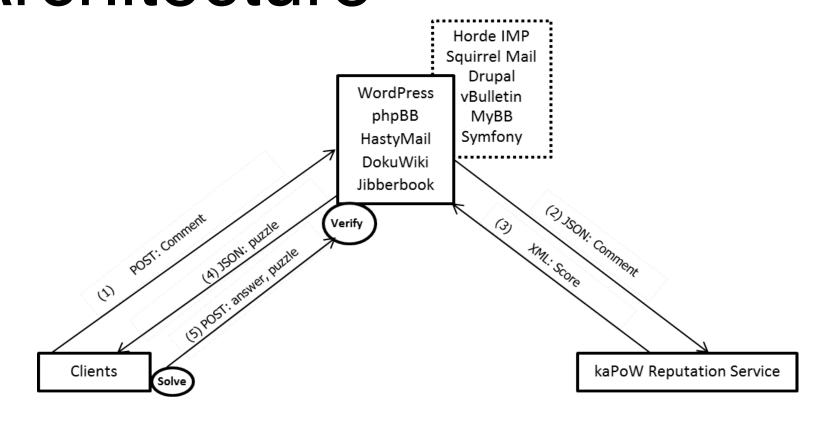
Objective

- Increase long-term cost and decrease throughput of web spam
- Minimize impact on legitimate users

Approach

- Force an arbitrary sequence of computation before servicing requests
- Adapt computation based the request

Challenges


- Discerning legitimate from adversarial requests
- Resistance to attack via metamorphism

Reputation service

Augment local metrics with global metrics to determine puzzle difficulty

IP blacklists (DShield, Spamhaus, Project Honeypot) URL blacklists (SURBL, URIBL) Content analysis (SpamAssasin, Akismet) Geographic location (GeoIP)

Architecture

Metamorphic sub-puzzles

Selected from a dynamic puzzle library

Modified Time-lock

non-parallelizable deterministic solution

Server issues parameters:

 $n \leftarrow p \times q$ (two large random primes)

 $D_C \leftarrow$ client-specific difficulty

 $N_C \leftarrow SHA1_K(URL, IP_C, D_C)$

Client solves $A' = (N_c^2)^{D_c} \mod n$

Server verifies A':

 $r \leftarrow 2^{D_C} \mod \Phi(n)$

 $A' = N_C^r \mod n$?

Targeted Hash-Reversal

Server issues parameters:

 D_C , $N \leftarrow$ client-specific difficulty, nonce

Client solves for A such that $SHA1_{\kappa}(N, URL, A) = 0 \mod D_{c}$

Hint-based Hash-Reversal

Server issues parameters:

 $A \leftarrow Random()$

 $Hint \leftarrow A - Uniform(0, D_c)$

 $P \leftarrow \mathsf{SHA1}_{\kappa}(A)$

Client searches from Hint to find A such that $SHA1_{\kappa}(A) = P$

Targeted Large Prime Generation

Server issues parameter A Client finds smallest prime number > A

Halting Problem

Server traps client into unending sequence of puzzles

Software

Project webpage

http://kapow.cs.pdx.edu

phpBB plugin

https://www.phpbb.com/customise/db/mod/kapow

WordPress plugin

https://wordpress.org/extend/plugins/headwinds

Interested in meeting the PIs? Attach post-it note below!

