Visible to the public CPS: Synergy: Cyber-Enabled Repetitive Motions in RehabilitationConflict Detection Enabled

Project Details
Lead PI:Hanz Richter
Co-PI(s):Dan Simon
Kenneth Sparks
Antonie van den Bogert
Performance Period:10/01/15 - 08/31/20
Institution(s):Cleveland State University
Sponsor(s):National Science Foundation
Award Number:1544702
486 Reads. Placed 249 out of 803 NSF CPS Projects based on total reads on all related artifacts.
Abstract: The project will produce breakthroughs in the science of human-machine interaction and will produce lasting impacts on exercise machine technologies. The proposed Cyber-Enabled Exercise Machines (CEEMs) adapt to their users, seeking to maximize the effectiveness of exercise while guaranteeing safety. CEEMs measure and process biomechanical variables and generate adjustments to its own resistance, and generate cues to be followed by the exerciser. CEEMs are reconfigurable by software, which permits a wide range of exercises with the same hardware. Two prototype machines will be field-tested with the student-athlete population and used to validate project goals. The prototypes will be a valuable instrument for dissemination and outreach, as well as for student engagement. The outcomes of this research have repercussions beyond athletic conditioning: the same foundations and methodologies can be followed to design machines for rehabilitation, exercise countermeasure devices for astronauts, and custom exercise devices for the elderly and persons with disabilities. Thus, the project has the potential to improve health of society members at various levels. This research will contribute to the foundations of cyber-physical system science in the following aspects: biomechanical modeling and real-time musculoskeletal state estimation; estimation theory and unscented H-infinity estimation; control theory and human-machine interaction dynamics, and micro-evolutionary optimization for real-time systems. The proposed Cyber-Enabled Exercise Machines (CEEMs) are highly reconfigurable devices which adapt to the user in pursuit of an optimization objective, namely maximal activation of target muscle groups. Machine adaptation occurs through port impedance modulation, and optimal cues are generated for the exerciser to follow. The goals of the project are threefold: i) development of foundational cyber-physical science and technology in the field of human-machine systems; ii) development of new approaches to modeling, design, control and optimization of advanced exercise machines, and iii) application of the above results to develop two custom-built CEEMs: a rowing ergometer and a 2-degree-of-freedom resistance machine.