Filters: Author is Peng, Y.  [Clear All Filters]
Peng, Y., Fu, G., Luo, Y., Hu, J., Li, B., Yan, Q..  2020.  Detecting Adversarial Examples for Network Intrusion Detection System with GAN. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :6–10.
With the increasing scale of network, attacks against network emerge one after another, and security problems become increasingly prominent. Network intrusion detection system is a widely used and effective security means at present. In addition, with the development of machine learning technology, various intelligent intrusion detection algorithms also start to sprout. By flexibly combining these intelligent methods with intrusion detection technology, the comprehensive performance of intrusion detection can be improved, but the vulnerability of machine learning model in the adversarial environment can not be ignored. In this paper, we study the defense problem of network intrusion detection system against adversarial samples. More specifically, we design a defense algorithm for NIDS against adversarial samples by using bidirectional generative adversarial network. The generator learns the data distribution of normal samples during training, which is an implicit model reflecting the normal data distribution. After training, the adversarial sample detection module calculates the reconstruction error and the discriminator matching error of sample. Then, the adversarial samples are removed, which improves the robustness and accuracy of NIDS in the adversarial environment.
Peng, Y., Yue, M., Li, H., Li, Y., Li, C., Xu, H., Wu, Q., Xi, W..  2018.  The Effect of Easy Axis Deviations on the Magnetization Reversal of Co Nanowire. IEEE Transactions on Magnetics. 54:1–5.
Macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by 3-D model for Co nanowire with various easy axis deviations from applied field. It is found that both the coercivity and the remanence decrease monotonously with the increase of easy axis deviation as well as the maximum magnetic product, indicating the large impact of the easy axis orientation on the magnetic performance. Moreover, the calculated angular distributions and the evolution of magnetic moments have been shown to explain the magnetic reversal process. It is demonstrated that the large demagnetization field in the two ends of the nanowire makes the occurrence of reversal domain nucleation easier, hence the magnetic reversal. In addition, the magnetic reversal was illustrated in terms of the analysis of the energy evolution.
Xu, W., Peng, Y..  2018.  SharaBLE: A Software Framework for Shared Usage of BLE Devices over the Internet. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :381—385.

With the development of Internet of Things, numerous IoT devices have been brought into our daily lives. Bluetooth Low Energy (BLE), due to the low energy consumption and generic service stack, has become one of the most popular wireless communication technologies for IoT. However, because of the short communication range and exclusive connection pattern, a BLE-equipped device can only be used by a single user near the device. To fully explore the benefits of BLE and make BLE-equipped devices truly accessible over the Internet as IoT devices, in this paper, we propose a cloud-based software framework that can enable multiple users to interact with various BLE IoT devices over the Internet. This framework includes an agent program, a suite of services hosting in cloud, and a set of RESTful APIs exposed to Internet users. Given the availability of this framework, the access to BLE devices can be extended from local to the Internet scale without any software or hardware changes to BLE devices, and more importantly, shared usage of remote BLE devices over the Internet is also made available.

Huang, K., Zhou, C., Tian, Y. C., Tu, W., Peng, Y..  2017.  Application of Bayesian network to data-driven cyber-security risk assessment in SCADA networks. 2017 27th International Telecommunication Networks and Applications Conference (ITNAC). :1–6.

Supervisory control and data acquisition (SCADA) systems are the key driver for critical infrastructures and industrial facilities. Cyber-attacks to SCADA networks may cause equipment damage or even fatalities. Identifying risks in SCADA networks is critical to ensuring the normal operation of these industrial systems. In this paper we propose a Bayesian network-based cyber-security risk assessment model to dynamically and quantitatively assess the security risk level in SCADA networks. The major distinction of our work is that the proposed risk assessment method can learn model parameters from historical data and then improve assessment accuracy by incrementally learning from online observations. Furthermore, our method is able to assess the risk caused by unknown attacks. The simulation results demonstrate that the proposed approach is effective for SCADA security risk assessment.