Biblio

Filters: Author is Li, B.  [Clear All Filters]
2019-02-22
Liao, X., Yu, Y., Li, B., Li, Z., Qin, Z..  2019.  A New Payload Partition Strategy in Color Image Steganography. IEEE Transactions on Circuits and Systems for Video Technology. :1-1.
In traditional steganographic schemes, RGB three channels payloads are assigned equally in a true color image. In fact, the security of color image steganography relates not only to data-embedding algorithms but also to different payload partition. How to exploit inter-channel correlations to allocate payload for performance enhancement is still an open issue in color image steganography. In this paper, a novel channel-dependent payload partition strategy based on amplifying channel modification probabilities is proposed, so as to adaptively assign the embedding capacity among RGB channels. The modification probabilities of three corresponding pixels in RGB channels are simultaneously increased, and thus the embedding impacts could be clustered, in order to improve the empirical steganographic security against the channel co-occurrences detection. Experimental results show that the new color image steganographic schemes incorporated with the proposed strategy can effectively make the embedding changes concentrated mainly in textured regions, and achieve better performance on resisting the modern color image steganalysis.
Hu, D., Wang, L., Jiang, W., Zheng, S., Li, B..  2018.  A Novel Image Steganography Method via Deep Convolutional Generative Adversarial Networks. IEEE Access. 6:38303-38314.
The security of image steganography is an important basis for evaluating steganography algorithms. Steganography has recently made great progress in the long-term confrontation with steganalysis. To improve the security of image steganography, steganography must have the ability to resist detection by steganalysis algorithms. Traditional embedding-based steganography embeds the secret information into the content of an image, which unavoidably leaves a trace of the modification that can be detected by increasingly advanced machine-learning-based steganalysis algorithms. The concept of steganography without embedding (SWE), which does not need to modify the data of the carrier image, appeared to overcome the detection of machine-learning-based steganalysis algorithms. In this paper, we propose a novel image SWE method based on deep convolutional generative adversarial networks. We map the secret information into a noise vector and use the trained generator neural network model to generate the carrier image based on the noise vector. No modification or embedding operations are required during the process of image generation, and the information contained in the image can be extracted successfully by another neural network, called the extractor, after training. The experimental results show that this method has the advantages of highly accurate information extraction and a strong ability to resist detection by state-of-the-art image steganalysis algorithms.
2019-03-28
Wen, M., Yao, D., Li, B., Lu, R..  2018.  State Estimation Based Energy Theft Detection Scheme with Privacy Preservation in Smart Grid. 2018 IEEE International Conference on Communications (ICC). :1-6.

The increasing deployment of smart meters at individual households has significantly improved people's experience in electricity bill payments and energy savings. It is, however, still challenging to guarantee the accurate detection of attacked meters' behaviors as well as the effective preservation of users'privacy information. In addition, rare existing research studies jointly consider both these two aspects. In this paper, we propose a Privacy-Preserving energy Theft Detection scheme (PPTD) to address the energy theft behaviors and information privacy issues in smart grid. Specifically, we use a recursive filter based on state estimation to estimate the user's energy consumption, and detect the abnormal data. During data transmission, we use the lightweight NTRU algorithm to encrypt the user's data to achieve privacy preservation. Security analysis demonstrates that in the PPTD scheme, only authorized units can transmit/receive data, and data privacy are also preserved. The performance evaluation results illustrate that our PPTD scheme can significantly reduce the communication and computation costs, and effectively detect abnormal users.

2017-02-27
Zhang, L., Li, B., Zhang, L., Li, D..  2015.  Fuzzy clustering of incomplete data based on missing attribute interval size. 2015 IEEE 9th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :101–104.

Fuzzy c-means algorithm is used to identity clusters of similar objects within a data set, while it is not directly applied to incomplete data. In this paper, we proposed a novel fuzzy c-means algorithm based on missing attribute interval size for the clustering of incomplete data. In the new algorithm, incomplete data set was transformed to interval data set according to the nearest neighbor rule. The missing attribute value was replaced by the corresponding interval median and the interval size was set as the additional property for the incomplete data to control the effect of interval size in clustering. Experiments on standard UCI data set show that our approach outperforms other clustering methods for incomplete data.