Found 208 results

Filters: Keyword is Malware  [Clear All Filters]
Ijaz, M., Durad, M. H., Ismail, M..  2019.  Static and Dynamic Malware Analysis Using Machine Learning. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :687–691.

Malware detection is an indispensable factor in security of internet oriented machines. The combinations of different features are used for dynamic malware analysis. The different combinations are generated from APIs, Summary Information, DLLs and Registry Keys Changed. Cuckoo sandbox is used for dynamic malware analysis, which is customizable, and provide good accuracy. More than 2300 features are extracted from dynamic analysis of malware and 92 features are extracted statically from binary malware using PEFILE. Static features are extracted from 39000 malicious binaries and 10000 benign files. Dynamically 800 benign files and 2200 malware files are analyzed in Cuckoo Sandbox and 2300 features are extracted. The accuracy of dynamic malware analysis is 94.64% while static analysis accuracy is 99.36%. The dynamic malware analysis is not effective due to tricky and intelligent behaviours of malwares. The dynamic analysis has some limitations due to controlled network behavior and it cannot be analyzed completely due to limited access of network.

[Anonymous].  2019.  El Paso and Dayton Tragedy-Related Scams and Malware Campaigns. CISA.

In the wake of the recent shootings in El Paso, TX, and Dayton, OH, the Cybersecurity and Infrastructure Security Agency (CISA) advises users to watch out for possible malicious cyber activity seeking to capitalize on these tragic events. Users should exercise caution in handling emails related to the shootings, even if they appear to originate from trusted sources. It is common for hackers to try to capitalize on horrible events that occur to perform phishing attacks.

Kelkar, S., Kraus, T., Morgan, D., Zhang, J., Dai, R..  2018.  Analyzing HTTP-Based Information Exfiltration of Malicious Android Applications. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1642-1645.
Exfiltrating sensitive information from smartphones has become one of the most significant security threats. We have built a system to identify HTTP-based information exfiltration of malicious Android applications. In this paper, we discuss the method to track the propagation of sensitive information in Android applications using static taint analysis. We have studied the leaked information, destinations to which information is exfiltrated, and their correlations with types of sensitive information. The analysis results based on 578 malicious Android applications have revealed that a significant portion of these applications are interested in identity-related sensitive information. The vast majority of malicious applications leak multiple types of sensitive information. We have also identified servers associated with three country codes including CN, US, and SG are most active in collecting sensitive information. The analysis results have also demonstrated that a wide range of non-default ports are used by suspicious URLs.
Polyakov, V. V., Lapin, S. A..  2018.  Architecture of the Honeypot System for Studying Targeted Attacks. 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). :202-205.
Among the threats to information systems of state institutions, enterprises and financial organizations of particular importance are those originating from organized criminal groups that specialize in obtaining unauthorized access to the computer information protected by law. Criminal groups often possess a material base including financial, technical, human and other resources that allow to perform targeted attacks on information resources as secretly as possible. The principal features of such targeted attacks are the use of software created or modified specifically for use in illegal purposes with respect to specific organizations. Due to these circumstances, the detection of such attacks is quite difficult, and their prevention is even more complicated. In this regard, the task of identifying and analyzing such threats is very relevant. One effective way to solve it is to implement the Honeypot system, which allows to research the strategy and tactics of the attackers. In the present article, there is proposed the original architecture of the Honeypot system designed to study targeted attacks on information systems of criminogenic objects. The architectural design includes such basic elements as the functional component, the registrar of events occurring in the system and the protector. The key features of the proposed Honeypot system are considered, and the functional purpose of its main components is described. The proposed system can find its application in providing information security of institutions, organizations and enterprises, it can be used in the development of information security systems.
Rong, Z., Xie, P., Wang, J., Xu, S., Wang, Y..  2018.  Clean the Scratch Registers: A Way to Mitigate Return-Oriented Programming Attacks. 2018 IEEE 29th International Conference on Application-specific Systems, Architectures and Processors (ASAP). :1–8.
With the implementation of W ⊕ X security model on computer system, Return-Oriented Programming(ROP) has become the primary exploitation technique for adversaries. Although many solutions that defend against ROP exploits have been proposed, they still suffer from various shortcomings. In this paper, we propose a new way to mitigate ROP attacks that are based on return instructions. We clean the scratch registers which are also the parameter registers based on the features of ROP malicious code and calling convention. A prototype is implemented on x64-based Linux platform based on Pin. Preliminary experimental results show that our method can efficiently mitigate conventional ROP attacks.
Carlin, D., O'Kane, P., Sezer, S., Burgess, J..  2018.  Detecting Cryptomining Using Dynamic Analysis. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–6.
With the rise in worth and popularity of cryptocurrencies, a new opportunity for criminal gain is being exploited and with little currently offered in the way of defence. The cost of mining (i.e., earning cryptocurrency through CPU-intensive calculations that underpin the blockchain technology) can be prohibitively expensive, with hardware costs and electrical overheads previously offering a loss compared to the cryptocurrency gained. Off-loading these costs along a distributed network of machines via malware offers an instantly profitable scenario, though standard Anti-virus (AV) products offer some defences against file-based threats. However, newer fileless malicious attacks, occurring through the browser on seemingly legitimate websites, can easily evade detection and surreptitiously engage the victim machine in computationally-expensive cryptomining (cryptojacking). With no current academic literature on the dynamic opcode analysis of cryptomining, to the best of our knowledge, we present the first such experimental study. Indeed, this is the first such work presenting opcode analysis on non-executable files. Our results show that browser-based cryptomining within our dataset can be detected by dynamic opcode analysis, with accuracies of up to 100%. Further to this, our model can distinguish between cryptomining sites, weaponized benign sites, de-weaponized cryptomining sites and real world benign sites. As it is process-based, our technique offers an opportunity to rapidly detect, prevent and mitigate such attacks, a novel contribution which should encourage further future work.
Rüth, Jan, Zimmermann, Torsten, Wolsing, Konrad, Hohlfeld, Oliver.  2018.  Digging into Browser-Based Crypto Mining. Proceedings of the Internet Measurement Conference 2018. :70–76.
Mining is the foundation of blockchain-based cryptocurrencies such as Bitcoin rewarding the miner for finding blocks for new transactions. The Monero currency enables mining with standard hardware in contrast to special hardware (ASICs) as often used in Bitcoin, paving the way for in-browser mining as a new revenue model for website operators. In this work, we study the prevalence of this new phenomenon. We identify and classify mining websites in 138M domains and present a new fingerprinting method which finds up to a factor of 5.7 more miners than publicly available block lists. Our work identifies and dissects Coinhive as the major browser-mining stakeholder. Further, we present a new method to associate mined blocks in the Monero blockchain to mining pools and uncover that Coinhive currently contributes 1.18% of mined blocks having turned over 1293 Moneros in June 2018.
Ghafir, Ibrahim, Prenosil, Vaclav, Hammoudeh, Mohammad, Aparicio-Navarro, Francisco J., Rabie, Khaled, Jabban, Ahmad.  2018.  Disguised Executable Files in Spear-phishing Emails: Detecting the Point of Entry in Advanced Persistent Threat. Proceedings of the 2Nd International Conference on Future Networks and Distributed Systems. :44:1–44:5.
In recent years, cyber attacks have caused substantial financial losses and been able to stop fundamental public services. Among the serious attacks, Advanced Persistent Threat (APT) has emerged as a big challenge to the cyber security hitting selected companies and organisations. The main objectives of APT are data exfiltration and intelligence appropriation. As part of the APT life cycle, an attacker creates a Point of Entry (PoE) to the target network. This is usually achieved by installing malware on the targeted machine to leave a back-door open for future access. A common technique employed to breach into the network, which involves the use of social engineering, is the spear phishing email. These phishing emails may contain disguised executable files. This paper presents the disguised executable file detection (DeFD) module, which aims at detecting disguised exe files transferred over the network connections. The detection is based on a comparison between the MIME type of the transferred file and the file name extension. This module was experimentally evaluated and the results show a successful detection of disguised executable files.
Nicho, M., Oluwasegun, A., Kamoun, F..  2018.  Identifying Vulnerabilities in APT Attacks: A Simulated Approach. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–4.
This research aims to identify some vulnerabilities of advanced persistent threat (APT) attacks using multiple simulated attacks in a virtualized environment. Our experimental study shows that while updating the antivirus software and the operating system with the latest patches may help in mitigating APTs, APT threat vectors could still infiltrate the strongest defenses. Accordingly, we highlight some critical areas of security concern that need to be addressed.
Cusack, Greg, Michel, Oliver, Keller, Eric.  2018.  Machine Learning-Based Detection of Ransomware Using SDN. Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :1–6.
The growth of malware poses a major threat to internet users, governments, and businesses around the world. One of the major types of malware, ransomware, encrypts a user's sensitive information and only returns the original files to the user after a ransom is paid. As malware developers shift the delivery of their product from HTTP to HTTPS to protect themselves from payload inspection, we can no longer rely on deep packet inspection to extract features for malware identification. Toward this goal, we propose a solution leveraging a recent trend in networking hardware, that is programmable forwarding engines (PFEs). PFEs allow collection of per-packet, network monitoring data at high rates. We use this data to monitor the network traffic between an infected computer and the command and control (C&C) server. We extract high-level flow features from this traffic and use this data for ransomware classification. We write a stream processor and use a random forest, binary classifier to utilizes these rich flow records in fingerprinting malicious, network activity without the requirement of deep packet inspection. Our classification model achieves a detection rate in excess of 0.86, while maintaining a false negative rate under 0.11. Our results suggest that a flow-based fingerprinting method is feasible and accurate enough to catch ransomware before encryption.
Konoth, Radhesh Krishnan, Vineti, Emanuele, Moonsamy, Veelasha, Lindorfer, Martina, Kruegel, Christopher, Bos, Herbert, Vigna, Giovanni.  2018.  MineSweeper: An In-Depth Look into Drive-by Cryptocurrency Mining and Its Defense. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1714–1730.
A wave of alternative coins that can be effectively mined without specialized hardware, and a surge in cryptocurrencies' market value has led to the development of cryptocurrency mining ( cryptomining ) services, such as Coinhive, which can be easily integrated into websites to monetize the computational power of their visitors. While legitimate website operators are exploring these services as an alternative to advertisements, they have also drawn the attention of cybercriminals: drive-by mining (also known as cryptojacking ) is a new web-based attack, in which an infected website secretly executes JavaScript code and/or a WebAssembly module in the user's browser to mine cryptocurrencies without her consent. In this paper, we perform a comprehensive analysis on Alexa's Top 1 Million websites to shed light on the prevalence and profitability of this attack. We study the websites affected by drive-by mining to understand the techniques being used to evade detection, and the latest web technologies being exploited to efficiently mine cryptocurrency. As a result of our study, which covers 28 Coinhive-like services that are widely being used by drive-by mining websites, we identified 20 active cryptomining campaigns. Motivated by our findings, we investigate possible countermeasures against this type of attack. We discuss how current blacklisting approaches and heuristics based on CPU usage are insufficient, and present MineSweeper, a novel detection technique that is based on the intrinsic characteristics of cryptomining code, and, thus, is resilient to obfuscation. Our approach could be integrated into browsers to warn users about silent cryptomining when visiting websites that do not ask for their consent.
Won, J., Bertino, E..  2018.  Securing Mobile Data Collectors by Integrating Software Attestation and Encrypted Data Repositories. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :26–35.
Drones are increasingly being used as mobile data collectors for various monitoring services. However, since they may move around in unattended hostile areas with valuable data, they can be the targets of malicious physical/cyber attacks. These attacks may aim at stealing privacy-sensitive data, including secret keys, and eavesdropping on communications between the drones and the ground station. To detect tampered drones, a code attestation technique is required. However, since attestation itself does not guarantee that the data in the drones' memory are not leaked, data collected by the drones must be protected and secret keys for secure communications must not be leaked. In this paper, we present a solution integrating techniques for software-based attestation, data encryption and secret key protection. We propose an attestation technique that fills up free memory spaces with data repositories. Data repositories consist of pseudo-random numbers that are also used to encrypt collected data. We also propose a group attestation scheme to efficiently verify the software integrity of multiple drones. Finally, to prevent secret keys from being leaked, we utilize a technique that converts short secret keys into large look-up tables. This technique prevents attackers from abusing free space in the data memory by filling up the space with the look-up tables. To evaluate the integrated solution, we implemented it on AR.Drone and Raspberry Pi.
Genç, Ziya Alper, Lenzini, Gabriele, Ryan, Peter Y.A..  2018.  Security Analysis of Key Acquiring Strategies Used by Cryptographic Ransomware. Proceedings of the Central European Cybersecurity Conference 2018. :7:1–7:6.
To achieve its goals, ransomware needs to employ strong encryption, which in turn requires access to high-grade encryption keys. Over the evolution of ransomware, various techniques have been observed to accomplish the latter. Understanding the advantages and disadvantages of each method is essential to develop robust defense strategies. In this paper we explain the techniques used by ransomware to derive encryption keys and analyze the security of each approach. We argue that recovery of data might be possible if the ransomware cannot access high entropy randomness sources. As an evidence to support our theoretical results, we provide a decryptor program for a previously undefeated ransomware.
Rodríguez, R. J., Martín-Pérez, M., Abadía, I..  2018.  A tool to compute approximation matching between windows processes. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–6.
Finding identical digital objects (or artifacts) during a forensic analysis is commonly achieved by means of cryptographic hashing functions, such as MD5, SHA1, or SHA-256, to name a few. However, these functions suffer from the avalanche effect property, which guarantees that if an input is changed slightly the output changes significantly. Hence, these functions are unsuitable for typical digital forensics scenarios where a forensics memory image from a likely compromised machine shall be analyzed. This memory image file contains a snapshot of processes (instances of executable files) which were up on execution when the dumping process was done. However, processes are relocated at memory and contain dynamic data that depend on the current execution and environmental conditions. Therefore, the comparison of cryptographic hash values of different processes from the same executable file will be negative. Bytewise approximation matching algorithms may help in these scenarios, since they provide a similarity measurement in the range [0,1] between similar inputs instead of a yes/no answer (in the range 0,1). In this paper, we introduce ProcessFuzzyHash, a Volatility plugin that enables us to compute approximation hash values of processes contained in a Windows memory dump.
Copty, Fady, Danos, Matan, Edelstein, Orit, Eisner, Cindy, Murik, Dov, Zeltser, Benjamin.  2018.  Accurate Malware Detection by Extreme Abstraction. Proceedings of the 34th Annual Computer Security Applications Conference. :101–111.

Modern malware applies a rich arsenal of evasion techniques to render dynamic analysis ineffective. In turn, dynamic analysis tools take great pains to hide themselves from malware; typically this entails trying to be as faithful as possible to the behavior of a real run. We present a novel approach to malware analysis that turns this idea on its head, using an extreme abstraction of the operating system that intentionally strays from real behavior. The key insight is that the presence of malicious behavior is sufficient evidence of malicious intent, even if the path taken is not one that could occur during a real run of the sample. By exploring multiple paths in a system that only approximates the behavior of a real system, we can discover behavior that would often be hard to elicit otherwise. We aggregate features from multiple paths and use a funnel-like configuration of machine learning classifiers to achieve high accuracy without incurring too much of a performance penalty. We describe our system, TAMALES (The Abstract Malware Analysis LEarning System), in detail and present machine learning results using a 330K sample set showing an FPR (False Positive Rate) of 0.10% with a TPR (True Positive Rate) of 99.11%, demonstrating that extreme abstraction can be extraordinarily effective in providing data that allows a classifier to accurately detect malware.

Kim, H. M., Song, H. M., Seo, J. W., Kim, H. K..  2018.  Andro-Simnet: Android Malware Family Classification Using Social Network Analysis. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1-8.

While the rapid adaptation of mobile devices changes our daily life more conveniently, the threat derived from malware is also increased. There are lots of research to detect malware to protect mobile devices, but most of them adopt only signature-based malware detection method that can be easily bypassed by polymorphic and metamorphic malware. To detect malware and its variants, it is essential to adopt behavior-based detection for efficient malware classification. This paper presents a system that classifies malware by using common behavioral characteristics along with malware families. We measure the similarity between malware families with carefully chosen features commonly appeared in the same family. With the proposed similarity measure, we can classify malware by malware's attack behavior pattern and tactical characteristics. Also, we apply community detection algorithm to increase the modularity within each malware family network aggregation. To maintain high classification accuracy, we propose a process to derive the optimal weights of the selected features in the proposed similarity measure. During this process, we find out which features are significant for representing the similarity between malware samples. Finally, we provide an intuitive graph visualization of malware samples which is helpful to understand the distribution and likeness of the malware networks. In the experiment, the proposed system achieved 97% accuracy for malware classification and 95% accuracy for prediction by K-fold cross-validation using the real malware dataset.

Xue, S., Zhang, L., Li, A., Li, X., Ruan, C., Huang, W..  2018.  AppDNA: App Behavior Profiling via Graph-Based Deep Learning. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :1475-1483.

Better understanding of mobile applications' behaviors would lead to better malware detection/classification and better app recommendation for users. In this work, we design a framework AppDNA to automatically generate a compact representation for each app to comprehensively profile its behaviors. The behavior difference between two apps can be measured by the distance between their representations. As a result, the versatile representation can be generated once for each app, and then be used for a wide variety of objectives, including malware detection, app categorizing, plagiarism detection, etc. Based on a systematic and deep understanding of an app's behavior, we propose to perform a function-call-graph-based app profiling. We carefully design a graph-encoding method to convert a typically extremely large call-graph to a 64-dimension fix-size vector to achieve robust app profiling. Our extensive evaluations based on 86,332 benign and malicious apps demonstrate that our system performs app profiling (thus malware detection, classification, and app recommendation) to a high accuracy with extremely low computation cost: it classifies 4024 (benign/malware) apps using around 5.06 second with accuracy about 93.07%; it classifies 570 malware's family (total 21 families) using around 0.83 second with accuracy 82.3%; it classifies 9,730 apps' functionality with accuracy 33.3% for a total of 7 categories and accuracy of 88.1 % for 2 categories.

Noor, U., Anwar, Z., Noor, U., Anwar, Z., Rashid, Z..  2018.  An Association Rule Mining-Based Framework for Profiling Regularities in Tactics Techniques and Procedures of Cyber Threat Actors. 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). :1-6.

Tactics Techniques and Procedures (TTPs) in cyber domain is an important threat information that describes the behavior and attack patterns of an adversary. Timely identification of associations between TTPs can lead to effective strategy for diagnosing the Cyber Threat Actors (CTAs) and their attack vectors. This study profiles the prevalence and regularities in the TTPs of CTAs. We developed a machine learning-based framework that takes as input Cyber Threat Intelligence (CTI) documents, selects the most prevalent TTPs with high information gain as features and based on them mine interesting regularities between TTPs using Association Rule Mining (ARM). We evaluated the proposed framework with publicly available TTPbased CTI documents. The results show that there are 28 TTPs more prevalent than the other TTPs. Our system identified 155 interesting association rules among the TTPs of CTAs. A summary of these rules is given to effectively investigate threats in the network.

Stokes, J. W., Wang, D., Marinescu, M., Marino, M., Bussone, B..  2018.  Attack and Defense of Dynamic Analysis-Based, Adversarial Neural Malware Detection Models. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1–8.

Recently researchers have proposed using deep learning-based systems for malware detection. Unfortunately, all deep learning classification systems are vulnerable to adversarial learning-based attacks, or adversarial attacks, where miscreants can avoid detection by the classification algorithm with very few perturbations of the input data. Previous work has studied adversarial attacks against static analysis-based malware classifiers which only classify the content of the unknown file without execution. However, since the majority of malware is either packed or encrypted, malware classification based on static analysis often fails to detect these types of files. To overcome this limitation, anti-malware companies typically perform dynamic analysis by emulating each file in the anti-malware engine or performing in-depth scanning in a virtual machine. These strategies allow the analysis of the malware after unpacking or decryption. In this work, we study different strategies of crafting adversarial samples for dynamic analysis. These strategies operate on sparse, binary inputs in contrast to continuous inputs such as pixels in images. We then study the effects of two, previously proposed defensive mechanisms against crafted adversarial samples including the distillation and ensemble defenses. We also propose and evaluate the weight decay defense. Experiments show that with these three defenses, the number of successfully crafted adversarial samples is reduced compared to an unprotected baseline system. In particular, the ensemble defense is the most resilient to adversarial attacks. Importantly, none of the defenses significantly reduce the classification accuracy for detecting malware. Finally, we show that while adding additional hidden layers to neural models does not significantly improve the malware classification accuracy, it does significantly increase the classifier's robustness to adversarial attacks.

Alsulami, B., Mancoridis, S..  2018.  Behavioral Malware Classification Using Convolutional Recurrent Neural Networks. 2018 13th International Conference on Malicious and Unwanted Software (MALWARE). :103-111.

Behavioral malware detection aims to improve on the performance of static signature-based techniques used by anti-virus systems, which are less effective against modern polymorphic and metamorphic malware. Behavioral malware classification aims to go beyond the detection of malware by also identifying a malware's family according to a naming scheme such as the ones used by anti-virus vendors. Behavioral malware classification techniques use run-time features, such as file system or network activities, to capture the behavioral characteristic of running processes. The increasing volume of malware samples, diversity of malware families, and the variety of naming schemes given to malware samples by anti-virus vendors present challenges to behavioral malware classifiers. We describe a behavioral classifier that uses a Convolutional Recurrent Neural Network and data from Microsoft Windows Prefetch files. We demonstrate the model's improvement on the state-of-the-art using a large dataset of malware families and four major anti-virus vendor naming schemes. The model is effective in classifying malware samples that belong to common and rare malware families and can incrementally accommodate the introduction of new malware samples and families.

Lysenko, S., Bobrovnikova, K., Savenko, O..  2018.  A Botnet Detection Approach Based on the Clonal Selection Algorithm. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). :424-428.

The paper presents a new technique for the botnets' detection in the corporate area networks. It is based on the usage of the algorithms of the artificial immune systems. Proposed approach is able to distinguish benign network traffic from malicious one using the clonal selection algorithm taking into account the features of the botnet's presence in the network. An approach present the main improvements of the BotGRABBER system. It is able to detect the IRC, HTTP, DNS and P2P botnets.

Deliu, I., Leichter, C., Franke, K..  2018.  Collecting Cyber Threat Intelligence from Hacker Forums via a Two-Stage, Hybrid Process Using Support Vector Machines and Latent Dirichlet Allocation. 2018 IEEE International Conference on Big Data (Big Data). :5008-5013.

Traditional security controls, such as firewalls, anti-virus and IDS, are ill-equipped to help IT security and response teams keep pace with the rapid evolution of the cyber threat landscape. Cyber Threat Intelligence (CTI) can help remediate this problem by exploiting non-traditional information sources, such as hacker forums and "dark-web" social platforms. Security and response teams can use the collected intelligence to identify emerging threats. Unfortunately, when manual analysis is used to extract CTI from non-traditional sources, it is a time consuming, error-prone and resource intensive process. We address these issues by using a hybrid Machine Learning model that automatically searches through hacker forum posts, identifies the posts that are most relevant to cyber security and then clusters the relevant posts into estimations of the topics that the hackers are discussing. The first (identification) stage uses Support Vector Machines and the second (clustering) stage uses Latent Dirichlet Allocation. We tested our model, using data from an actual hacker forum, to automatically extract information about various threats such as leaked credentials, malicious proxy servers, malware that evades AV detection, etc. The results demonstrate our method is an effective means for quickly extracting relevant and actionable intelligence that can be integrated with traditional security controls to increase their effectiveness.

Jiang, J., Yin, Q., Shi, Z., Li, M..  2018.  Comprehensive Behavior Profiling Model for Malware Classification. 2018 IEEE Symposium on Computers and Communications (ISCC). :00129-00135.

In view of the great threat posed by malware and the rapid growing trend about malware variants, it is necessary to determine the category of new samples accurately for further analysis and taking appropriate countermeasures. The network behavior based classification methods have become more popular now. However, the behavior profiling models they used usually only depict partial network behavior of samples or require specific traffic selection in advance, which may lead to adverse effects on categorizing advanced malware with complex activities. In this paper, to overcome the shortages of traditional models, we raise a comprehensive behavior model for profiling the behavior of malware network activities. And we also propose a corresponding malware classification method which can extract and compare the major behavior of samples. The experimental and comparison results not only demonstrate our method can categorize samples accurately in both criteria, but also prove the advantage of our profiling model to two other approaches in accuracy performance, especially under scenario based criteria.

Cho, S., Han, I., Jeong, H., Kim, J., Koo, S., Oh, H., Park, M..  2018.  Cyber Kill Chain based Threat Taxonomy and its Application on Cyber Common Operational Picture. 2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

Over a decade, intelligent and persistent forms of cyber threats have been damaging to the organizations' cyber assets and missions. In this paper, we analyze current cyber kill chain models that explain the adversarial behavior to perform advanced persistent threat (APT) attacks, and propose a cyber kill chain model that can be used in view of cyber situation awareness. Based on the proposed cyber kill chain model, we propose a threat taxonomy that classifies attack tactics and techniques for each attack phase using CAPEC, ATT&CK that classify the attack tactics, techniques, and procedures (TTPs) proposed by MITRE. We also implement a cyber common operational picture (CyCOP) to recognize the situation of cyberspace. The threat situation can be represented on the CyCOP by applying cyber kill chain based threat taxonomy.

Qbeitah, M. A., Aldwairi, M..  2018.  Dynamic malware analysis of phishing emails. 2018 9th International Conference on Information and Communication Systems (ICICS). :18–24.

Malicious software or malware is one of the most significant dangers facing the Internet today. In the fight against malware, users depend on anti-malware and anti-virus products to proactively detect threats before damage is done. Those products rely on static signatures obtained through malware analysis. Unfortunately, malware authors are always one step ahead in avoiding detection. This research deals with dynamic malware analysis, which emphasizes on: how the malware will behave after execution, what changes to the operating system, registry and network communication take place. Dynamic analysis opens up the doors for automatic generation of anomaly and active signatures based on the new malware's behavior. The research includes a design of honeypot to capture new malware and a complete dynamic analysis laboratory setting. We propose a standard analysis methodology by preparing the analysis tools, then running the malicious samples in a controlled environment to investigate their behavior. We analyze 173 recent Phishing emails and 45 SPIM messages in search for potentially new malwares, we present two malware samples and their comprehensive dynamic analysis.