Biblio

Filters: Keyword is Identification  [Clear All Filters]
2021-03-01
Sarathy, N., Alsawwaf, M., Chaczko, Z..  2020.  Investigation of an Innovative Approach for Identifying Human Face-Profile Using Explainable Artificial Intelligence. 2020 IEEE 18th International Symposium on Intelligent Systems and Informatics (SISY). :155–160.
Human identification is a well-researched topic that keeps evolving. Advancement in technology has made it easy to train models or use ones that have been already created to detect several features of the human face. When it comes to identifying a human face from the side, there are many opportunities to advance the biometric identification research further. This paper investigates the human face identification based on their side profile by extracting the facial features and diagnosing the feature sets with geometric ratio expressions. These geometric ratio expressions are computed into feature vectors. The last stage involves the use of weighted means to measure similarity. This research addresses the problem of using an eXplainable Artificial Intelligence (XAI) approach. Findings from this research, based on a small data-set, conclude that the used approach offers encouraging results. Further investigation could have a significant impact on how face profiles can be identified. Performance of the proposed system is validated using metrics such as Precision, False Acceptance Rate, False Rejection Rate and True Positive Rate. Multiple simulations indicate an Equal Error Rate of 0.89.
2021-03-09
Klym, H., Vasylchyshyn, I..  2020.  Biometric System of Access to Information Resources. 2020 IEEE 21st International Conference on Computational Problems of Electrical Engineering (CPEE). :1–4.

The biometric system of access to information resources has been developed. The software and hardware complex are designed to protect information resources and personal data from unauthorized access using the principle of user authentication by fingerprints. In the developed complex, the traditional input of login and password was replaced by applying a finger to the fingerprint scanner. The system automatically recognizes the fingerprint and provides access to the information resource, provides encryption of personal data and automation of the authorization process on the web resource. The web application was implemented using the Bootstrap framework, the 000webhost web server, the phpMyAdmin database server, the PHP scripting language, the HTML hypertext markup language, along with cascading style sheets and embedded scripts (JavaScript), which created a full-fledged web-site and Google Chrome extension with the ability to integrate it into other systems. The structural schematic diagram was performed. The design of the device is offered. The algorithm of the program operation and the program of the device operation in the C language are developed.

Razaque, A., Amsaad, F., Almiani, M., Gulsezim, D., Almahameed, M. A., Al-Dmour, A., Khan, M. J., Ganda, R..  2020.  Successes and Failures in Exploring Biometric Algorithms in NIST Open Source Software and Data. 2020 Seventh International Conference on Software Defined Systems (SDS). :231—234.

With the emergence of advanced technology, the user authentication methods have also been improved. Authenticating the user, several secure and efficient approaches have been introduced, but the biometric authentication method is considered much safer as compared to password-driven methods. In this paper, we explore the risks, concerns, and methods by installing well-known open-source software used in Unibiometric analysis by the partners of The National Institute of Standards and Technology (NIST). Not only are the algorithms used all open source but it comes with test data and several internal open source utilities necessary to process biometric data.

H, R. M., Shrinivasa, R, C., M, D. R., J, A. N., S, K. R. N..  2020.  Biometric Authentication for Safety Lockers Using Cardiac Vectors. 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). :1—5.

Security has become the vital component of today's technology. People wish to safeguard their valuable items in bank lockers. With growing technology most of the banks have replaced the manual lockers by digital lockers. Even though there are numerous biometric approaches, these are not robust. In this work we propose a new approach for personal biometric identification based on features extracted from ECG.

2021-03-04
Wang, H., Sayadi, H., Kolhe, G., Sasan, A., Rafatirad, S., Homayoun, H..  2020.  Phased-Guard: Multi-Phase Machine Learning Framework for Detection and Identification of Zero-Day Microarchitectural Side-Channel Attacks. 2020 IEEE 38th International Conference on Computer Design (ICCD). :648—655.

Microarchitectural Side-Channel Attacks (SCAs) have emerged recently to compromise the security of computer systems by exploiting the existing processors' hardware vulnerabilities. In order to detect such attacks, prior studies have proposed the deployment of low-level features captured from built-in Hardware Performance Counter (HPC) registers in modern microprocessors to implement accurate Machine Learning (ML)-based SCAs detectors. Though effective, such attack detection techniques have mainly focused on binary classification models offering limited insights on identifying the type of attacks. In addition, while existing SCAs detectors required prior knowledge of attacks applications to detect the pattern of side-channel attacks using a variety of microarchitectural features, detecting unknown (zero-day) SCAs at run-time using the available HPCs remains a major challenge. In response, in this work we first identify the most important HPC features for SCA detection using an effective feature reduction method. Next, we propose Phased-Guard, a two-level machine learning-based framework to accurately detect and classify both known and unknown attacks at run-time using the most prominent low-level features. In the first level (SCA Detection), Phased-Guard using a binary classification model detects the existence of SCAs on the target system by determining the critical scenarios including system under attack and system under no attack. In the second level (SCA Identification) to further enhance the security against side-channel attacks, Phased-Guard deploys a multiclass classification model to identify the type of SCA applications. The experimental results indicate that Phased-Guard by monitoring only the victim applications' microarchitectural HPCs data, achieves up to 98 % attack detection accuracy and 99.5% SCA identification accuracy significantly outperforming the state-of-the-art solutions by up to 82 % in zero-day attack detection at the cost of only 4% performance overhead for monitoring.

2020-05-04
de Sá, Alan Oliveira, Carmo, Luiz Fernando Rust da C., Santos Machado, Raphael C..  2019.  Countermeasure for Identification of Controlled Data Injection Attacks in Networked Control Systems. 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 IoT). :455–459.
Networked Control Systems (NCS) are widely used in Industry 4.0 to obtain better management and operational capabilities, as well as to reduce costs. However, despite the benefits provided by NCSs, the integration of communication networks with physical plants can also expose these systems to cyber threats. This work proposes a link monitoring strategy to identify linear time-invariant transfer functions performed by a Man-in-the-Middle during controlled data injection attacks in NCSs. The results demonstrate that the proposed identification scheme provides adequate accuracy when estimating the attack function, and does not interfere in the plant behavior when the system is not under attack.
2020-01-20
Zhu, Yan, Zhang, Yi, Wang, Jing, Song, Weijing, Chu, Cheng-Chung, Liu, Guowei.  2019.  From Data-Driven to Intelligent-Driven: Technology Evolution of Network Security in Big Data Era. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:103–109.

With the advent of the big data era, information systems have exhibited some new features, including boundary obfuscation, system virtualization, unstructured and diversification of data types, and low coupling among function and data. These features not only lead to a big difference between big data technology (DT) and information technology (IT), but also promote the upgrading and evolution of network security technology. In response to these changes, in this paper we compare the characteristics between IT era and DT era, and then propose four DT security principles: privacy, integrity, traceability, and controllability, as well as active and dynamic defense strategy based on "propagation prediction, audit prediction, dynamic management and control". We further discuss the security challenges faced by DT and the corresponding assurance strategies. On this basis, the big data security technologies can be divided into four levels: elimination, continuation, improvement, and innovation. These technologies are analyzed, combed and explained according to six categories: access control, identification and authentication, data encryption, data privacy, intrusion prevention, security audit and disaster recovery. The results will support the evolution of security technologies in the DT era, the construction of big data platforms, the designation of security assurance strategies, and security technology choices suitable for big data.

2020-01-27
Nakamura, Emilio, Ribeiro, Sérgio.  2019.  Risk-Based Attributed Access Control Modelling in a Health Platform: Results from Project CityZen. 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :391–398.

This paper presents an access control modelling that integrates risk assessment elements in the attribute-based model to organize the identification, authentication and authorization rules. Access control is complex in integrated systems, which have different actors accessing different information in multiple levels. In addition, systems are composed by different components, much of them from different developers. This requires a complete supply chain trust to protect the many existent actors, their privacy and the entire ecosystem. The incorporation of the risk assessment element introduces additional variables like the current environment of the subjects and objects, time of the day and other variables to help produce more efficient and effective decisions in terms of granting access to specific objects. The risk-based attributed access control modelling was applied in a health platform, Project CityZen.

2020-07-16
Farivar, Faezeh, Haghighi, Mohammad Sayad, Barchinezhad, Soheila, Jolfaei, Alireza.  2019.  Detection and Compensation of Covert Service-Degrading Intrusions in Cyber Physical Systems through Intelligent Adaptive Control. 2019 IEEE International Conference on Industrial Technology (ICIT). :1143—1148.

Cyber-Physical Systems (CPS) are playing important roles in the critical infrastructure now. A prominent family of CPSs are networked control systems in which the control and feedback signals are carried over computer networks like the Internet. Communication over insecure networks make system vulnerable to cyber attacks. In this article, we design an intrusion detection and compensation framework based on system/plant identification to fight covert attacks. We collect error statistics of the output estimation during the learning phase of system operation and after that, monitor the system behavior to see if it significantly deviates from the expected outputs. A compensating controller is further designed to intervene and replace the classic controller once the attack is detected. The proposed model is tested on a DC motor as the plant and is put against a deception signal amplification attack over the forward link. Simulation results show that the detection algorithm well detects the intrusion and the compensator is also successful in alleviating the attack effects.

2020-01-27
Ma, Congjun, Wang, Haipeng, Zhao, Tao, Dian, Songyi.  2019.  Weighted LS-SVMR-Based System Identification with Outliers. Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering. :1–6.
Plenty of methods applied in system identification, while those based on data-driven are increasingly popular. Usually we ignore the absence of outliers among the system to be modeled, but it is unreachable in reality. To improve the precision of identification towards system with outliers, advantageous approaches with robustness are needed. This study analyzes the superiority of weighted Least Square Support Vector Machine Regression (LS-SVMR) in the field of system identification under random outliers, and compare it with LS-SVMR mainly.
2020-08-28
Yee, George O. M..  2019.  Attack Surface Identification and Reduction Model Applied in Scrum. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—8.

Today's software is full of security vulnerabilities that invite attack. Attackers are especially drawn to software systems containing sensitive data. For such systems, this paper presents a modeling approach especially suited for Serum or other forms of agile development to identify and reduce the attack surface. The latter arises due to the locations containing sensitive data within the software system that are reachable by attackers. The approach reduces the attack surface by changing the design so that the number of such locations is reduced. The approach performs these changes on a visual model of the software system. The changes are then considered for application to the actual system to improve its security.

2018-05-24
Krzywiecki, Lukasz, Kutylowski, Miroslaw.  2017.  Security of Okamoto Identification Scheme: A Defense Against Ephemeral Key Leakage and Setup. Proceedings of the Fifth ACM International Workshop on Security in Cloud Computing. :43–50.
We consider the situation, where an adversary may learn the ephemeral values used by the prover within an identification protocol, aiming to get the secret keys of the user, or just to impersonate the prover subsequently. Unfortunately, most classical cryptographic identification protocols are exposed to such attacks, which might be quite realistic in case of software implementations. According to a recent proposal from SECIT-2017, we regard a scheme to be secure, if a malicious verifier, allowed to set the prover's ephemerals in the query stage, cannot impersonate the prover later on. We focus on the Okamoto Identification Scheme (IS), and show how to make it immune to the threats described above. Via reduction to the GDH Problem, we provide security guarantees in case of insufficient control over the unit executing Okamoto identification protocol (the standard Okamoto protocol is insecure in this situation).
2017-08-02
Iscen, Ahmet, Furon, Teddy.  2016.  Group Testing for Identification with Privacy. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. :51–56.

This paper describes an approach where group testing helps in enforcing security and privacy in identification. We detail a particular scheme based on embedding and group testing. We add a second layer of defense, group vectors, where each group vector represents a set of dataset vectors. Whereas the selected embedding poorly protects the data when used alone, the group testing approach makes it much harder to reconstruct the data when combined with the embedding. Even when curious server and user collude to disclose the secret parameters, they cannot accurately recover the data. Another byproduct of our approach is that it reduces the complexity of the search and the required storage space. We show the interest of our work in a benchmark biometrics dataset, where we verify our theoretical analysis with real data.

2015-05-06
Slomovic, A..  2014.  Privacy Issues in Identity Verification. Security Privacy, IEEE. 12:71-73.

Identity verification plays an important role in creating trust in the economic system. It can, and should, be done in a way that doesn't decrease individual privacy.

2021-04-08
Zhang, T., Zhao, P..  2010.  Insider Threat Identification System Model Based on Rough Set Dimensionality Reduction. 2010 Second World Congress on Software Engineering. 2:111—114.
Insider threat makes great damage to the security of information system, traditional security methods are extremely difficult to work. Insider attack identification plays an important role in insider threat detection. Monitoring user's abnormal behavior is an effective method to detect impersonation, this method is applied to insider threat identification, to built user's behavior attribute information database based on weights changeable feedback tree augmented Bayes network, but data is massive, using the dimensionality reduction based on rough set, to establish the process information model of user's behavior attribute. Using the minimum risk Bayes decision can effectively identify the real identity of the user when user's behavior departs from the characteristic model.