Biblio

Found 5955 results

Filters: Keyword is pubcrawl  [Clear All Filters]
2019-01-16
Honggang, Zhao, Chen, Shi, Leyu, Zhai.  Submitted.  Design and Implementation of Lightweight 6LoWPAN Gateway Based on Contiki - IEEE Conference Publication.

6LoWPAN technology realizes the IPv6 packet transmission in the IEEE 802.15.4 based WSN. And 6LoWPAN is regarded as one of the ideal technologies to realize the interconnection between WSN and Internet, which is the key to build the IoT. Contiki is an open source and highly portable multitasking operating system, in which the 6LoWPAN has been implemented. In contiki, only several K Bytes of code and a few hundred bytes of memory are required to provide a multitasking environment and built-in TCP/IP support. This makes it especially suitable for memory constrained embedded platforms. In this paper, a lightweight 6LoWPAN gateway based on Contiki is designed and its designs of hardware and software are described. A complex experiment environment is presented, in which the gateway's capability of accessing the Internet is verified, and its performance about the average network delay and jitter are analyzed. The experimental results show that the gateway designed in this paper can not only realize the interconnection between 6LoWPAN networks and Internet, but also have good network adaptability and stability.

2019-11-26
Khan, JavedAkhtar.  2019.  2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). :619-623.
This paper proposes the implementation of progressive authentication service in smart android mobile phone. In this digital era, massive amount of work can be done in the digital form using the smart devices like smart phone , laptop, Tablets, etc. The number of smartphone users approx. reach to 299.24 million, as per the recent survey report [1] in 2019 this count will reach 2.7 billion and after 3 years, this count will increase up to 442.5 million. This article includes a cluster based progressive smart lock with a dependent combination that is short and more secure in nature. Android provides smart lock facilities with the combination of 9 dot, 6dot, 5dot, 4dot and 1-9 number. By using this mobile phone user will be able to generate pattern lock or number password for authentication. This is a single authentication system, this research paper includes a more secured multiple cluster based pattern match system.
2019-09-26
Kim, H., Hahn, C., Hur, J..  2019.  Analysis of Forward Private Searchable Encryption and Its Application to Multi-Client Settings. 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN). :529-531.
Searchable encryption (SE) supports privacy-preserving searches over encrypted data. Recent studies on SE have focused on improving efficiency of the schemes. However, it was shown that most of the previous SE schemes could reveal the client's queries even if they are encrypted, thereby leading to privacy violation. In order to solve the problem, several forward private SE schemes have been proposed in a single client environment. However, the previous forward private SE schemes have never been analyzed in multi-client settings. In this paper, we briefly review the previous forward private SE schemes. Then, we conduct a comparative analysis of them in terms of performance and forward privacy. Our analysis demonstrates the previous forward secure SE schemes highly depend on the file-counter. Lastly, we show that they are not scalable in multi-client settings due to the performance and security issue from the file-counter.
2019-12-30
Kee, Ruitao, Sie, Jovan, Wong, Rhys, Yap, Chern Nam.  2019.  Arithmetic Circuit Homomorphic Encryption and Multiprocessing Enhancements. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–5.
This is a feasibility study on homomorphic encryption using the TFHE library [1] in daily computing using cloud services. A basic set of arithmetic operations namely - addition, subtraction, multiplication and division were created from the logic gates provide. This research peeks into the impact of logic gates on these operations such as latency of the gates and the operation itself. Multiprocessing enhancement were done for multiplication operation using MPI and OpenMP to reduce latency.
2019-11-25
Pei, Xin, Li, Xuefeng, Wu, Xiaochuan, Zheng, Kaiyan, Zhu, Boheng, Cao, Yixin.  2019.  Assured Delegation on Data Storage and Computation via Blockchain System. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0055–0061.
With the widespread of cloud computing, the delegation of storage and computing is becoming a popular trend. Concerns on data integrity, security, user privacy as well as the correctness of execution are highlighted due to the untrusted remote data manipulation. Most of existing proposals solve the integrity checking and verifiable computation problems by challenge-response model, but are lack of scalability and reusability. Via blockchain, we achieve efficient and transparent public verifiable delegation for both storage and computing. Meanwhile, the smart contract provides API for request handling and secure data query. The security and privacy issues of data opening are settled by applying cryptographic algorithms all through the delegations. Additionally, any access to the outsourced data requires the owner's authentication, so that the dat transference and utilization are under control.
2020-01-13
Yugha, R., Chithra, S..  2019.  Attribute Based Trust Evaluation for Secure RPL Protocol in IoT Environment. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–7.
Internet of Things (IoT) is an advanced automation technology and analytics systems which connected physical objects that have access through the Internet and have their unique flexibility and an ability to be suitable for any environment. There are some critical applications like smart health care system, in which the data collection, sharing and routing through IoT has to be handled in sensitive way. The IPv6 Routing Protocol for LL(Low-power and Lossy) networks (RPL) is the routing protocols to ensure reliable data transfer in 6LOWPAN networks. However, RPL is vulnerable to number of security attacks which creates a major impact on energy consumption and memory requirements which is not suitable for energy constraint networks like IoT. This requires secured RPL protocol to be used for critical data transfer. This paper introduces a novel approach of combining a lightweight LBS (Location Based Service) authentication and Attribute Based Trust Evaluation (ABTE). The algorithm has been implemented for smart health care system and analyzed how its perform in the RPL protocol for IoT constrained environments.
2019-11-25
Zaher, Ashraf A., Amjad Hussain, G..  2019.  Chaos-based Cryptography for Transmitting Multimedia Data over Public Channels. 2019 7th International Conference on Information and Communication Technology (ICoICT). :1–6.
This paper explores using chaos-based cryptography for transmitting multimedia data, mainly speech and voice messages, over public communication channels, such as the internet. The secret message to be transmitted is first converted into a one-dimensional time series, that can be cast in a digital/binary format. The main feature of the proposed technique is mapping the two levels of every corresponding bit of the time series into different multiple chaotic orbits, using a simple encryption function. This one-to-many mapping robustifies the encryption technique and makes it resilient to crypto-analysis methods that rely on associating the energy level of the signal into two binary levels, using return map attacks. A chaotic nonautonomous Duffing oscillator is chosen to implement the suggested technique, using three different parameters that are assumed unknown at the receiver side. Synchronization between the transmitter and the receiver and reconstructing the secret message, at the receiver side, is done using a Lyapunov-based adaptive technique. Achieving stable operation, tuning the required control gains, as well as effective utilization of the bandwidth of the public communication channel are investigated. Two different case studies are presented; the first one deals with text that can be expressed as 8-bit ASCII code, while the second one corresponds to an analog acoustic signal that corresponds to the voice associated with pronouncing a short sentence. Advantages and limitation of the proposed technique are highlighted, while suggesting extensions to other multimedia signals, along with their required additional computational effort.
2019-11-26
Schmidt, Mark, Pfeiffer, Tom, Grill, Christin, Huber, Robert, Jirauschek, Christian.  2019.  Coexistence of Intensity Pattern Types in Broadband Fourier Domain Mode Locked (FDML) Lasers. 2019 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC). :1-1.
Fourier domain mode locked (FDML) lasers, in which the sweep period of the swept bandpass filter is synchronized with the roundtrip time of the optical field, are broadband and rapidly tunable fiber ring laser systems, which offer rich dynamics. A detailed understanding is important from a fundamental point of view, and also required in order to improve current FDML lasers which have not reached their coherence limit yet. Here, we study the formation of localized patterns in the intensity trace of FDML laser systems based on a master equation approach [1] derived from the nonlinear Schrödinger equation for polarization maintaining setups, which shows excellent agreement with experimental data. A variety of localized patterns and chaotic or bistable operation modes were previously discovered in [2–4] by investigating primarily quasi-static regimes within a narrow sweep bandwidth where a delay differential equation model was used. In particular, the formation of so-called holes which are characterized by a dip in the intensity trace and a rapid phase jump are described. Such holes have tentatively been associated with Nozaki-Bekki holes which are solutions to the complex Ginzburg-Landau equation. In Fig. 1 (b) to (d) small sections of a numerical solution of our master equation are presented for a partially dispersion compensated polarization maintaining FDML laser setup. Within our approach, we are able to study the full sweep dynamics over a broad sweep range of more than 100 nm. This allows us to identify different co-existing intensity patterns within a single sweep. In general, high frequency distortions in the intensity trace of FDML lasers [5] are mainly caused by synchronization mismatches caused by the fiber dispersion or a detuning of the roundtrip time of the optical field to the sweep period of the swept bandpass filter. This timing errors lead to rich and complex dynamics over many roundtrips and are a major source of noise, greatly affecting imaging and sensing applications. For example, the imaging quality in optical coherence tomography where FDML lasers are superior sources is significantly reduced [5].
2019-12-18
Essaid, Meryam, Kim, DaeYong, Maeng, Soo Hoon, Park, Sejin, Ju, Hong Taek.  2019.  A Collaborative DDoS Mitigation Solution Based on Ethereum Smart Contract and RNN-LSTM. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–6.
Recently Distributed Denial-of-Service (DDoS) are becoming more and more sophisticated, which makes the existing defence systems not capable of tolerating by themselves against wide-ranging attacks. Thus, collaborative protection mitigation has become a needed alternative to extend defence mechanisms. However, the existing coordinated DDoS mitigation approaches either they require a complex configuration or are highly-priced. Blockchain technology offers a solution that reduces the complexity of signalling DDoS system, as well as a platform where many autonomous systems (Ass) can share hardware resources and defence capabilities for an effective DDoS defence. In this work, we also used a Deep learning DDoS detection system; we identify individual DDoS attack class and also define whether the incoming traffic is legitimate or attack. By classifying the attack traffic flow separately, our proposed mitigation technique could deny only the specific traffic causing the attack, instead of blocking all the traffic coming towards the victim(s).
2019-08-05
Ahmad, F., Adnane, A., KURUGOLLU, F., Hussain, R..  2019.  A Comparative Analysis of Trust Models for Safety Applications in IoT-Enabled Vehicular Networks. 2019 Wireless Days (WD). :1-8.
Vehicular Ad-hoc NETwork (VANET) is a vital transportation technology that facilitates the vehicles to share sensitive information (such as steep-curve warnings and black ice on the road) with each other and with the surrounding infrastructure in real-time to avoid accidents and enable comfortable driving experience.To achieve these goals, VANET requires a secure environment for authentic, reliable and trusted information dissemination among the network entities. However, VANET is prone to different attacks resulting in the dissemination of compromised/false information among network nodes. One way to manage a secure and trusted network is to introduce trust among the vehicular nodes. To this end, various Trust Models (TMs) are developed for VANET and can be broadly categorized into three classes, Entity-oriented Trust Models (ETM), Data oriented Trust Models (DTM) and Hybrid Trust Models (HTM). These TMs evaluate trust based on the received information (data), the vehicle (entity) or both through different mechanisms. In this paper, we present a comparative study of the three TMs. Furthermore, we evaluate these TMs against the different trust, security and quality-of-service related benchmarks. Simulation results revealed that all these TMs have deficiencies in terms of end-to-end delays, event detection probabilities and false positive rates. This study can be used as a guideline for researchers to design new efficient and effective TMs for VANET.
2019-12-17
Li, Ming, Hawrylak, Peter, Hale, John.  2019.  Concurrency Strategies for Attack Graph Generation. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :174-179.
The network attack graph is a powerful tool for analyzing network security, but the generation of a large-scale graph is non-trivial. The main challenge is from the explosion of network state space, which greatly increases time and storage costs. In this paper, three parallel algorithms are proposed to generate scalable attack graphs. An OpenMP-based programming implementation is used to test their performance. Compared with the serial algorithm, the best performance from the proposed algorithms provides a 10X speedup.
2020-01-13
Li, Nan, Varadharajan, Vijay, Nepal, Surya.  2019.  Context-Aware Trust Management System for IoT Applications with Multiple Domains. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1138–1148.
The Internet of Things (IoT) provides connectivity between heterogeneous devices in different applications, such as smart wildlife, supply chain and traffic management. Trust management system (TMS) assesses the trustworthiness of service with respect to its quality. Under different context information, a service provider may be trusted in one context but not in another. The existing context-aware trust models usually store trust values under different contexts and search the closest (to a given context) record to evaluate the trustworthiness of a service. However, it is not suitable for distributed resource-constrained IoT devices which have small memory and low power. Reputation systems are applied in many trust models where trustor obtains recommendations from others. In context-based trust evaluation, it requires interactive queries to find relevant information from remote devices. The communication overhead and energy consumption are issues in low power networks like 6LoWPAN. In this paper, we propose a new context-aware trust model for lightweight IoT devices. The proposed model provides a trustworthiness overview of a service provider without storing past behavior records, that is, constant size storage. The proposed model allows a trustor to decide the significance of context items. This could result in distinctive decisions under the same trustworthiness record. We also show the performance of the proposed model under different attacks.
Zhao, Xuanyi, Cassella, Cristian.  2019.  On the Coupling Coefficient of ScyAl1-yN-based Piezoelectric Acoustic Resonators. 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC). :1–4.
This work investigates the electromechanical coupling coefficient (kt2) attained by two available piezoelectric acoustic resonator technologies relying on Aluminum Scandium Nitride (ScyAl1-yN) films to operate. In particular, by using a theoretical approach, we extracted the maximum kt2-value attainable, for different scandium-doping concentrations (from 0% to 40%), by Film-Bulk-Acoustic-Resonators (FBARs) and Cross-Sectional-Lamé-Mode Resonators (CLMRs). For the first time, we show how the use of higher scandium doping concentrations can render the kt2 of CLMRs higher (35%) than the one attained by FBARs (28%). Such a unique feature renders CLMRs as ideal candidates to form lithographically defined resonators and filters for next-generation wideband radiofrequency (RF) front-ends.
2019-10-02
Zhang, Y., Eisele, S., Dubey, A., Laszka, A., Srivastava, A. K..  2019.  Cyber-Physical Simulation Platform for Security Assessment of Transactive Energy Systems. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
Transactive energy systems (TES) are emerging as a transformative solution for the problems that distribution system operators face due to an increase in the use of distributed energy resources and rapid growth in scalability of managing active distribution system (ADS). On the one hand, these changes pose a decentralized power system control problem, requiring strategic control to maintain reliability and resiliency for the community and for the utility. On the other hand, they require robust financial markets while allowing participation from diverse prosumers. To support the computing and flexibility requirements of TES while preserving privacy and security, distributed software platforms are required. In this paper, we enable the study and analysis of security concerns by developing Transactive Energy Security Simulation Testbed (TESST), a TES testbed for simulating various cyber attacks. In this work, the testbed is used for TES simulation with centralized clearing market, highlighting weaknesses in a centralized system. Additionally, we present a blockchain enabled decentralized market solution supported by distributed computing for TES, which on one hand can alleviate some of the problems that we identify, but on the other hand, may introduce newer issues. Future study of these differing paradigms is necessary and will continue as we develop our security simulation testbed.
2020-01-13
Guanyu, Chen, Yunjie, Han, Chang, Li, Changrui, Lin, Degui, Fang, Xiaohui, Rong.  2019.  Data Acquisition Network and Application System Based on 6LoWPAN and IPv6 Transition Technology. 2019 IEEE 2nd International Conference on Electronics Technology (ICET). :78–83.
In recent years, IPv6 will gradually replace IPv4 with IPv4 address exhaustion and the rapid development of the Low-Power Wide-Area network (LPWAN) wireless communication technology. This paper proposes a data acquisition and application system based on 6LoWPAN and IPv6 transition technology. The system uses 6LoWPAN and 6to4 tunnel to realize integration of the internal sensor network and Internet to improve the adaptability of the gateway and reduce the average forwarding delay and packet loss rate of small data packet. Moreover, we design and implement the functions of device access management, multiservice data storage and affair data service by combining the C/S architecture with the actual uploaded river quality data. The system has the advantages of flexible networking, low power consumption, rich IPv6 address, high communication security, and strong reusability.
Seidel, Felix, Krentz, Konrad-Felix, Meinel, Christoph.  2019.  Deep En-Route Filtering of Constrained Application Protocol (CoAP) Messages on 6LoWPAN Border Routers. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :201–206.
Devices on the Internet of Things (IoT) are usually battery-powered and have limited resources. Hence, energy-efficient and lightweight protocols were designed for IoT devices, such as the popular Constrained Application Protocol (CoAP). Yet, CoAP itself does not include any defenses against denial-of-sleep attacks, which are attacks that aim at depriving victim devices of entering low-power sleep modes. For example, a denial-of-sleep attack against an IoT device that runs a CoAP server is to send plenty of CoAP messages to it, thereby forcing the IoT device to expend energy for receiving and processing these CoAP messages. All current security solutions for CoAP, namely Datagram Transport Layer Security (DTLS), IPsec, and OSCORE, fail to prevent such attacks. To fill this gap, Seitz et al. proposed a method for filtering out inauthentic and replayed CoAP messages "en-route" on 6LoWPAN border routers. In this paper, we expand on Seitz et al.'s proposal in two ways. First, we revise Seitz et al.'s software architecture so that 6LoWPAN border routers can not only check the authenticity and freshness of CoAP messages, but can also perform a wide range of further checks. Second, we propose a couple of such further checks, which, as compared to Seitz et al.'s original checks, more reliably protect IoT devices that run CoAP servers from remote denial-of-sleep attacks, as well as from remote exploits. We prototyped our solution and successfully tested its compatibility with Contiki-NG's CoAP implementation.
2019-12-30
Kim, Sunbin, Kim, Hyeoncheol.  2019.  Deep Explanation Model for Facial Expression Recognition Through Facial Action Coding Unit. 2019 IEEE International Conference on Big Data and Smart Computing (BigComp). :1–4.
Facial expression is the most powerful and natural non-verbal emotional communication method. Facial Expression Recognition(FER) has significance in machine learning tasks. Deep Learning models perform well in FER tasks, but it doesn't provide any justification for its decisions. Based on the hypothesis that facial expression is a combination of facial muscle movements, we find that Facial Action Coding Units(AUs) and Emotion label have a relationship in CK+ Dataset. In this paper, we propose a model which utilises AUs to explain Convolutional Neural Network(CNN) model's classification results. The CNN model is trained with CK+ Dataset and classifies emotion based on extracted features. Explanation model classifies the multiple AUs with the extracted features and emotion classes from the CNN model. Our experiment shows that with only features and emotion classes obtained from the CNN model, Explanation model generates AUs very well.
2019-12-02
Takahashi, Akira, Tibouchi, Mehdi.  2019.  Degenerate Fault Attacks on Elliptic Curve Parameters in OpenSSL. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :371–386.
In this paper, we describe several practically exploitable fault attacks against OpenSSL's implementation of elliptic curve cryptography, related to the singular curve point decompression attacks of Blömer and Günther (FDTC2015) and the degenerate curve attacks of Neves and Tibouchi (PKC 2016). In particular, we show that OpenSSL allows to construct EC key files containing explicit curve parameters with a compressed base point. A simple single fault injection upon loading such a file yields a full key recovery attack when the key file is used for signing with ECDSA, and a complete recovery of the plaintext when the file is used for encryption using an algorithm like ECIES. The attack is especially devastating against curves with j-invariant equal to 0 such as the Bitcoin curve secp256k1, for which key recovery reduces to a single division in the base field. Additionally, we apply the present fault attack technique to OpenSSL's implementation of ECDH, by combining it with Neves and Tibouchi's degenerate curve attack. This version of the attack applies to usual named curve parameters with nonzero j-invariant, such as P192 and P256. Although it is typically more computationally expensive than the one against signatures and encryption, and requires multiple faulty outputs from the server, it can recover the entire static secret key of the server even in the presence of point validation. These various attacks can be mounted with only a single instruction skipping fault, and therefore can be easily injected using low-cost voltage glitches on embedded devices. We validated them in practice using concrete fault injection experiments on a Rapsberry Pi single board computer running the up to date OpenSSL command line tools-a setting where the threat of fault attacks is quite significant.
2020-01-13
Kabiri, Peyman, Chavoshi, Mahdieh.  2019.  Destructive Attacks Detection and Response System for Physical Devices in Cyber-Physical Systems. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–6.
Nowadays, physical health of equipment controlled by Cyber-Physical Systems (CPS) is a significant concern. This paper reports a work, in which, a hardware is placed between Programmable Logic Controller (PLC) and the actuator as a solution. The proposed hardware operates in two conditions, i.e. passive and active. Operation of the proposed solution is based on the repetitive operational profile of the actuators. The normal operational profile of the actuator is fed to the protective hardware and is considered as the normal operating condition. In the normal operating condition, the middleware operates in its passive mode and simply monitors electronic signals passing between PLC and Actuator. In case of any malicious operation, the proposed hardware operates in its active mode and both slowly stops the actuator and sends an alert to SCADA server initiating execution of the actuator's emergency profile. Thus, the proposed hardware gains control over the actuator and prevents any physical damage on the operating devices. Two sample experiments are reported in which, results of implementing the proposed solution are reported and assessed. Results show that once the PLC sends incorrect data to actuator, the proposed hardware detects it as an anomaly. Therefore, it does not allow the PLC to send incorrect and unauthorized data pattern to its actuator. Significance of the paper is in introducing a solution to prevent destruction of physical devices apart from source or purpose of the encountered anomaly and apart from CPS functionality or PLC model and operation.
2019-11-26
Chen, Qiu-Liang, Bai, Jia-Ju, Jiang, Zu-Ming, Lawall, Julia, Hu, Shi-Min.  2019.  Detecting Data Races Caused by Inconsistent Lock Protection in Device Drivers. 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). :366-376.
Data races are often hard to detect in device drivers, due to the non-determinism of concurrent execution. According to our study of Linux driver patches that fix data races, more than 38% of patches involve a pattern that we call inconsistent lock protection. Specifically, if a variable is accessed within two concurrently executed functions, the sets of locks held around each access are disjoint, at least one of the locksets is non-empty, and at least one of the involved accesses is a write, then a data race may occur.In this paper, we present a runtime analysis approach, named DILP, to detect data races caused by inconsistent lock protection in device drivers. By monitoring driver execution, DILP collects the information about runtime variable accesses and executed functions. Then after driver execution, DILP analyzes the collected information to detect and report data races caused by inconsistent lock protection. We evaluate DILP on 12 device drivers in Linux 4.16.9, and find 25 real data races.
2020-01-13
Zegzhda, Dmitry, Lavrova, Daria, Khushkeev, Aleksei.  2019.  Detection of information security breaches in distributed control systems based on values prediction of multidimensional time series. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :780–784.
Proposed an approach for information security breaches detection in distributed control systems based on prediction of multidimensional time series formed of sensor and actuator data.
2019-12-11
Canetti, Ran, Stoughton, Alley, Varia, Mayank.  2019.  EasyUC: Using EasyCrypt to Mechanize Proofs of Universally Composable Security. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :167–16716.
We present a methodology for using the EasyCrypt proof assistant (originally designed for mechanizing the generation of proofs of game-based security of cryptographic schemes and protocols) to mechanize proofs of security of cryptographic protocols within the universally composable (UC) security framework. This allows, for the first time, the mechanization and formal verification of the entire sequence of steps needed for proving simulation-based security in a modular way: Specifying a protocol and the desired ideal functionality; Constructing a simulator and demonstrating its validity, via reduction to hard computational problems; Invoking the universal composition operation and demonstrating that it indeed preserves security. We demonstrate our methodology on a simple example: stating and proving the security of secure message communication via a one-time pad, where the key comes from a Diffie-Hellman key-exchange, assuming ideally authenticated communication. We first put together EasyCrypt-verified proofs that: (a) the Diffie-Hellman protocol UC-realizes an ideal key-exchange functionality, assuming hardness of the Decisional Diffie-Hellman problem, and (b) one-time-pad encryption, with a key obtained using ideal key-exchange, UC-realizes an ideal secure-communication functionality. We then mechanically combine the two proofs into an EasyCrypt-verified proof that the composed protocol realizes the same ideal secure-communication functionality. Although formulating a methodology that is both sound and workable has proven to be a complex task, we are hopeful that it will prove to be the basis for mechanized UC security analyses for significantly more complex protocols and tasks.
2020-01-13
Vasilev, Rusen Vasilev, Haka, Aydan Mehmed.  2019.  Enhanced Simulation Framework for Realisation of Mobility in 6LoWPAN Wireless Sensor Networks. 2019 IEEE XXVIII International Scientific Conference Electronics (ET). :1–4.
The intense incursion of the Internet of Things (IoT) into all areas of modern life has led to a need for a more detailed study of these technologies and their mechanisms of work. It is necessary to study mechanisms in order to improve QoS, security, identifying shortest routes, mobility, etc. This paper proposes an enhanced simulation framework that implements an improved mechanism for prioritising traffic on 6LoWPAN networks and the realisation of micro-mobility.
2020-01-02
Shabanov, Boris, Sotnikov, Alexander, Palyukh, Boris, Vetrov, Alexander, Alexandrova, Darya.  2019.  Expert System for Managing Policy of Technological Security in Uncertainty Conditions: Architectural, Algorithmic, and Computing Aspects. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1716–1721.
The paper discusses the architectural, algorithmic and computing aspects of creating and operating a class of expert system for managing technological safety of an enterprise, in conditions of a large flow of diagnostic variables. The algorithm for finding a faulty technological chain uses expert information, formed as a set of evidence on the influence of diagnostic variables on the correctness of the technological process. Using the Dempster-Schafer trust function allows determining the overall probability measure on subsets of faulty process chains. To combine different evidence, the orthogonal sums of the base probabilities determined for each evidence are calculated. The procedure described above is converted into the rules of the knowledge base production. The description of the developed prototype of the expert system, its architecture, algorithmic and software is given. The functionality of the expert system and configuration tools for a specific type of production are under discussion.
2020-01-13
Hu, Jizhou, Qu, Hemi, Guo, Wenlan, Chang, Ye, Pang, Wei, Duan, Xuexin.  2019.  Film Bulk Acoustic Wave Resonator for Trace Chemical Warfare Agents Simulants Detection in Micro Chromatography. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII). :45–48.
This paper reported the polymer coated film bulk acoustic resonators (FBAR) as a sensitive detector in micro chromatography for the detection of trace chemical warfare agents (CWA) simulants. The FBAR sensor was enclosed in a microfluidic channel and then coupled with microfabricated separation column. The subsequent chromatographic analysis successfully demonstrated the detection of parts per billion (ppb) concentrations of chemical warfare agents (CWAs) simulants in a five components gas mixture. This work represented an important step toward the realization of FBAR based handheld micro chromatography for CWA detection in the field.