Biblio

Filters: Keyword is CCN  [Clear All Filters]
2021-04-08
Nasir, N. A., Jeong, S.-H..  2020.  Testbed-based Performance Evaluation of the Information-Centric Network. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :166–169.
Proliferation of the Internet usage is rapidly increasing, and it is necessary to support the performance requirements for multimedia applications, including lower latency, improved security, faster content retrieval, and adjustability to the traffic load. Nevertheless, because the current Internet architecture is a host-oriented one, it often fails to support the necessary demands such as fast content delivery. A promising networking paradigm called Information-Centric Networking (ICN) focuses on the name of the content itself rather than the location of that content. A distinguished alternative to this ICN concept is Content-Centric Networking (CCN) that exploits more of the performance requirements by using in-network caching and outperforms the current Internet in terms of content transfer time, traffic load control, mobility support, and efficient network management. In this paper, instead of using the saturated method of validating a theory by simulation, we present a testbed-based performance evaluation of the ICN network. We used several new functions of the proposed testbed to improve the performance of the basic CCN. In this paper, we also show that the proposed testbed architecture performs better in terms of content delivery time compared to the basic CCN architecture through graphical results.
2020-05-29
Sattar, Muhammad Umar, Rehman, Rana Asif.  2019.  Interest Flooding Attack Mitigation in Named Data Networking Based VANETs. 2019 International Conference on Frontiers of Information Technology (FIT). :245—2454.

Nowadays network applications have more focus on content distribution which is hard to tackle in IP based Internet. Information Centric Network (ICN) have the ability to overcome this problem for various scenarios, specifically for Vehicular Ad Hoc Networks (VANETs). Conventional IP based system have issues like mobility management hence ICN solve this issue because data fetching is not dependent on a particular node or physical location. Many initial investigations have performed on an instance of ICN commonly known as Named Data Networking (NDN). However, NDN exposes the new type of security susceptibilities, poisoning cache attack, flooding Interest attack, and violation of privacy because the content in the network is called by the name. This paper focused on mitigation of Interest flooding attack by proposing new scheme, named Interest Flooding Attack Mitigation Scheme (IFAMS) in Vehicular Named Data Network (VNDN). Simulation results depict that proposed IFAMS scheme mitigates the Interest flooding attack in the network.

2017-03-07
Dong, Jiqun, Qiao, Xiuquan.  2016.  A novel service provisioning mechanism in content-centric networking. 2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS). :319–326.

Content-Centric Networking (CCN) has emerged as a clean-slate future Internet architecture to address the challenges faced by traditional IP network, such as mobility, scalable content distribution and security. As a novel networking paradigm, CCN is built on named data, not host address and decouples the content from location. By the in-network caching, consumer can fetch the interested content from the closest routers.

2017-02-21
E. Aubry, T. Silverston, I. Chrisment.  2015.  "SRSC: SDN-based routing scheme for CCN". Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft). :1-5.

Content delivery such as P2P or video streaming generates the main part of the Internet traffic and Content Centric Network (CCN) appears as an appropriate architecture to satisfy the user needs. However, the lack of scalable routing scheme is one of the main obstacles that slows down a large deployment of CCN at an Internet-scale. In this paper we propose to use the Software-Defined Networking (SDN) paradigm to decouple data plane and control plane and present SRSC, a new routing scheme for CCN. Our solution is a clean-slate approach using only CCN messages and the SDN paradigm. We implemented our solution into the NS-3 simulator and perform simulations of our proposal. SRSC shows better performances than the flooding scheme used by default in CCN: it reduces the number of messages, while still improves CCN caching performances.