Biblio

Filters: Keyword is sensor data  [Clear All Filters]
2021-02-08
Liu, S., Kosuru, R., Mugombozi, C. F..  2020.  A Moving Target Approach for Securing Secondary Frequency Control in Microgrids. 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). :1–6.
Microgrids' dependency on communication links exposes the control systems to cyber attack threats. In this work, instead of designing reactive defense approaches, a proacitve moving target defense mechanism is proposed for securing microgrid secondary frequency control from denial of service (DoS) attack. The sensor data is transmitted by following a Markov process, not in a deterministic way. This uncertainty will increase the difficulty for attacker's decision making and thus significantly reduce the attack space. As the system parameters are constantly changing, a gain scheduling based secondary frequency controller is designed to sustain the system performance. Case studies of a microgrid with four inverter-based DGs show the proposed moving target mechanism can enhance the resiliency of the microgrid control systems against DoS attacks.
2021-01-25
Marasco, E. O., Quaglia, F..  2020.  AuthentiCAN: a Protocol for Improved Security over CAN. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :533–538.
The continuous progress of electronic equipments has influenced car manufacturers, leading to the integration of the latest infotainment technologies and providing connection to external devices, such as mobile phones. Modern cars work with ECUs (Electronic Control Units) that handle user interactions and sensor data, by also sending information to actuators using simple, reliable and efficient networks with fast protocols, like CAN (Controller Area Network). This is the most used vehicular protocol, which allows interconnecting different ECUs, making them interact in a synergic manner. On the down side, there is a security risk related to the exposition of malicious ECU's frames-possibly generated by compromised devices-which can lead to the possibility to remote control all the car equipments (like brakes and others) by an attacker. We propose a solution to this problem, designing an authentication and encryption system above CAN, called AuthentiCAN. Our proposal is tailored for the evolution of CAN called CAN-FD, and avoids the possibility for an attacker to inject malicious frames that are not discarded by the destination ECUs. Also, we avoid the possibility for an attacker to learn the interactions that occur across ECUs, with the objective of maliciously replaying messages-which would lead the actuator's logic to be no longer compliant with the actual data sources. We also present a simulation study of our solution, where we provide an assessment of its overhead, e.g. in terms of reduction of the throughput of data-unit transfer over CAN-FD, caused by the added security features.
2020-01-13
Zegzhda, Dmitry, Lavrova, Daria, Khushkeev, Aleksei.  2019.  Detection of information security breaches in distributed control systems based on values prediction of multidimensional time series. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :780–784.
Proposed an approach for information security breaches detection in distributed control systems based on prediction of multidimensional time series formed of sensor and actuator data.
2020-05-22
Ahsan, Ramoza, Bashir, Muzammil, Neamtu, Rodica, Rundensteiner, Elke A., Sarkozy, Gabor.  2019.  Nearest Neighbor Subsequence Search in Time Series Data. 2019 IEEE International Conference on Big Data (Big Data). :2057—2066.
Continuous growth in sensor data and other temporal sequence data necessitates efficient retrieval and similarity search support on these big time series datasets. However, finding exact similarity results, especially at the granularity of subsequences, is known to be prohibitively costly for large data sets. In this paper, we thus propose an efficient framework for solving this exact subsequence similarity match problem, called TINN (TIme series Nearest Neighbor search). Exploiting the range interval diversity properties of time series datasets, TINN captures similarity at two levels of abstraction, namely, relationships among subsequences within each long time series and relationships across distinct time series in the data set. These relationships are compactly organized in an augmented relationship graph model, with the former relationships encoded in similarity vectors at TINN nodes and the later captured by augmented edge types in the TINN Graph. Query processing strategy deploy novel pruning techniques on the TINN Graph, including node skipping, vertical and horizontal pruning, to significantly reduce the number of time series as well as subsequences to be explored. Comprehensive experiments on synthetic and real world time series data demonstrate that our TINN model consistently outperforms state-of-the-art approaches while still guaranteeing to retrieve exact matches.
2020-11-09
Pflanzner, T., Feher, Z., Kertesz, A..  2019.  A Crawling Approach to Facilitate Open IoT Data Archiving and Reuse. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :235–242.
Several cloud providers have started to offer specific data management services by responding to the new trend called the Internet of Things (IoT). In recent years, we have already seen that cloud computing has managed to serve IoT needs for data retrieval, processing and visualization transparent for the user side. IoT-Cloud systems for smart cities and smart regions can be very complex, therefore their design and analysis should be supported by means of simulation. Nevertheless, the models used in simulation environments should be as close as to the real world utilization to provide reliable results. To facilitate such simulations, in earlier works we proposed an IoT trace archiving service called SUMMON that can be used to gather real world datasets, and to reuse them for simulation experiments. In this paper we provide an extension to SUMMON with an automated web crawling service that gathers IoT and sensor data from publicly available websites. We introduce the architecture and operation of this approach, and exemplify it utilization with three use cases. The provided archiving solution can be used by simulators to perform realistic evaluations.
2019-03-25
von Maltitz, Marcel, Carle, Georg.  2018.  Leveraging Secure Multiparty Computation in the Internet of Things. Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. :508–510.
Centralized systems in the Internet of Things—be it local middleware or cloud-based services—fail to fundamentally address privacy of the collected data. We propose an architecture featuring secure multiparty computation at its core in order to realize data processing systems which already incorporate support for privacy protection in the architecture.
2019-09-23
Babu, S., Markose, S..  2018.  IoT Enabled Robots with QR Code Based Localization. 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR). :1–5.

Robots are sophisticated form of IoT devices as they are smart devices that scrutinize sensor data from multiple sources and observe events to decide the best procedural actions to supervise and manoeuvre objects in the physical world. In this paper, localization of the robot is addressed by QR code Detection and path optimization is accomplished by Dijkstras algorithm. The robot can navigate automatically in its environment with sensors and shortest path is computed whenever heading measurements are updated with QR code landmark recognition. The proposed approach highly reduces computational burden and deployment complexity as it reflects the use of artificial intelligence to self-correct its course when required. An Encrypted communication channel is established over wireless local area network using SSHv2 protocol to transfer or receive sensor data(or commands) making it an IoT enabled Robot.

2019-04-01
Urien, P..  2018.  Blockchain IoT (BIoT): A New Direction for Solving Internet of Things Security and Trust Issues. 2018 3rd Cloudification of the Internet of Things (CIoT). :1–4.

The Blockchain is an emerging paradigm that could solve security and trust issues for Internet of Things (IoT) platforms. We recently introduced in an IETF draft (“Blockchain Transaction Protocol for Constraint Nodes”) the BIoT paradigm, whose main idea is to insert sensor data in blockchain transactions. Because objects are not logically connected to blockchain platforms, controller entities forward all information needed for transaction forgery. Never less in order to generate cryptographic signatures, object needs some trusted computing resources. In previous papers we proposed the Four-Quater Architecture integrating general purpose unit (GPU), radio SoC, sensors/actuators and secure elements including TLS/DTLS stacks. These secure microcontrollers also manage crypto libraries required for blockchain operation. The BIoT concept has four main benefits: publication/duplication of sensors data in public and distributed ledgers, time stamping by the blockchain infrastructure, data authentication, and non repudiation.

2018-02-06
MüUller, W., Kuwertz, A., Mühlenberg, D., Sander, J..  2017.  Semantic Information Fusion to Enhance Situational Awareness in Surveillance Scenarios. 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). :397–402.

In recent years, the usage of unmanned aircraft systems (UAS) for security-related purposes has increased, ranging from military applications to different areas of civil protection. The deployment of UAS can support security forces in achieving an enhanced situational awareness. However, in order to provide useful input to a situational picture, sensor data provided by UAS has to be integrated with information about the area and objects of interest from other sources. The aim of this study is to design a high-level data fusion component combining probabilistic information processing with logical and probabilistic reasoning, to support human operators in their situational awareness and improving their capabilities for making efficient and effective decisions. To this end, a fusion component based on the ISR (Intelligence, Surveillance and Reconnaissance) Analytics Architecture (ISR-AA) [1] is presented, incorporating an object-oriented world model (OOWM) for information integration, an expressive knowledge model and a reasoning component for detection of critical events. Approaches for translating the information contained in the OOWM into either an ontology for logical reasoning or a Markov logic network for probabilistic reasoning are presented.

2018-05-15
2017-02-23
K. Sathya, J. Premalatha, V. Rajasekar.  2015.  "Random number generation based on sensor with decimation method". 2015 IEEE Workshop on Computational Intelligence: Theories, Applications and Future Directions (WCI). :1-5.

Strength of security and privacy of any cryptographic mechanisms that use random numbers require that the random numbers generated have two important properties namely 1. Uniform distribution and 2. Independence. With the growth of Internet many devices are connected to Internet that host sensors. One idea proposed is to use sensor data as seed for Random Number Generator (RNG) since sensors measure the physical phenomena that exhibit randomness over time. The random numbers generated from sensor data can be used for cryptographic algorithms in Internet activities. These sensor data also pose weaknesses where sensors may be under adversarial control that may lead to generating expected random sequence which breaks the security and privacy. This paper proposes a wash-rinse-spin approach to process the raw sensor data that increases randomness in the seed value. The generated sequences from two sensors are combined by Decimation method to improve unpredictability. This makes the sensor data to be more secure in generating random numbers preventing attackers from knowing the random sequence through adversarial control.