Biblio

Found 3061 results

Filters: Keyword is Human Behavior  [Clear All Filters]
2020-03-30
2020-01-27
2017-03-20
Dormann, Will.  Submitted.  Google Authentication Risks on iOS. Proceedings of the 1st International Workshop on Mobile Development. :3–5.

The Google Identity Platform is a system that allows a user to sign in to applications and other services by using a Google account. Google Sign-In is one such method for providing one’s identity to the Google Identity Platform. Google Sign-In is available for Android applications and iOS applications, as well as for websites and other devices. Users of Google Sign-In find that it integrates well with the Android platform, but iOS users (iPhone, iPad, etc.) do not have the same experience. The user experience when logging in to a Google account on an iOS application can not only be more tedious than the Android experience, but it also conditions users to engage in behaviors that put the information in their Google accounts at risk.

2020-04-06
Fouchal, Hacène, Ninet, Alain.  2020.  Partial Signature for Cooperative Intelligent Transport Systems. 2020 International Conference on Computing, Networking and Communications (ICNC). :586–590.
On C-ITS (Cooperative Intelligent Transport Systems) vehicles send and receive sensitive messages informing about events on roads (accidents, traffic jams, etc,..). The authentication of these messages is highly recommended in order to increase the users confidence about this system. This authentication ensures that only messages coming from trusted vehicles are accepted by receivers. An adapted PKI (Public Key Infrastructure) for C-ITS provides certificates for each vehicle. The certificate will be used to sign messages. This principle is used within deployed C-ITS solutions over the world. This solution is easy to implement but has one major flaw: each message needs to be sent with its signature and its certificate. The size of the message to send becomes high. In the meantime, for many C-ITS use cases, each message is sent many times for robustness reasons. The communication channel could be overloaded. In this paper, we propose to split the signature into some equal parts. When a message has to be sent, it will be sent with one of these parts. A receiver will save the received message with its actual part. For each reception, it will collect the remaining signature parts until all the signature parts are received. Our solution is implemented in a C-ITS architecture working through Bluetooth protocol using the advertising model. The solution is applicable for vehicle speeds reaching 130 km/h. We have proved, through a set of real experimentations, that our solution is possible.
2020-03-30
Thida, Aye, Shwe, Thanda.  2020.  Process Provenance-based Trust Management in Collaborative Fog Environment. 2020 IEEE Conference on Computer Applications(ICCA). :1–5.
With the increasing popularity and adoption of IoT technology, fog computing has been used as an advancement to cloud computing. Although trust management issues in cloud have been addressed, there are still very few studies in a fog area. Trust is needed for collaborating among fog nodes and trust can further improve the reliability by assisting in selecting the fog nodes to collaborate. To address this issue, we present a provenance based trust mechanism that traces the behavior of the process among fog nodes. Our approach adopts the completion rate and failure rate as the process provenance in trust scores of computing workload, especially obvious measures of trustworthiness. Simulation results demonstrate that the proposed system can effectively be used for collaboration in a fog environment.
2020-03-23
Choi, Jungyong, Shin, WoonSeob, Kim, Jonghyun, Kim, Ki-Hyung.  2020.  Random Seed Generation For IoT Key Generation and Key Management System Using Blockchain. 2020 International Conference on Information Networking (ICOIN). :663–665.
Recently, the Internet of Things (IoT) is growing rapidly. IoT sensors are attached to various devices, and information is detected, collected and utilized through various wired and wireless communication environments. As the IoT is used in various places, IoT devices face a variety of malicious attacks such as MITM and reverse engineering. To prevent these, encryption is required for device-to-device communication, and keys required for encryption must be properly managed. We propose a scheme to generate seed needed for key generation and a scheme to manage the public key using blockchain.
2020-04-06
Chu, YeonSung, Kim, Jae Min, Lee, YoonJick, Shim, SungHoon, Huh, Junho.  2020.  SS-DPKI: Self-Signed Certificate Based Decentralized Public Key Infrastructure for Secure Communication. 2020 IEEE International Conference on Consumer Electronics (ICCE). :1–6.
Currently, the most commonly used scheme for identity authentication on the Internet is based on asymmetric cryptography and the use of a centralized model. The centralized model needs a Certificate Authority (CA) as a trusted third party and a trust chain of CA. However, CA-based PKI is weak in the single point of failure and certificate transparency. Our system, called SS-DPKI, propose a public and decentralized PKI system model. We describe a detailed scheme as well as application to use decentralized PKI based secure communication. Our proposal prevents storage overhead on the data size of transactions and provide reasonable certificate verification time.
Alamleh, Hosam, AlQahtani, Ali Abdullah S..  2020.  Two Methods for Authentication Using Variable Transmission Power Patterns. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0355–0358.
In the last decade, the adoption of wireless systems has increased. These systems allow multiple devices to send data wirelessly using radio waves. Moreover, in some applications, authentication is done wirelessly by exchanging authentication data over the air as in wireless locks and keyless entry systems. On the other hand, most of the wireless devices today can control the radio frequency transmission power to optimize the system's performance and minimize interference. In this paper, we explore the possibility of modulating the radio frequency transmission power in wireless systems for authentication purposes and using it for source authentication. Furthermore, we propose two system models that perform authentication using variable power transmission patterns. Then, we discuss possible applications. Finally, we implement and test a prototype system using IEEE 802.11 (Wi-Fi) devices.
2020-01-27
Matyukhina, Alina, Stakhanova, Natalia, Dalla Preda, Mila, Perley, Celine.  2019.  Adversarial Authorship Attribution in Open-Source Projects. Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy. :291–302.
Open-source software is open to anyone by design, whether it is a community of developers, hackers or malicious users. Authors of open-source software typically hide their identity through nicknames and avatars. However, they have no protection against authorship attribution techniques that are able to create software author profiles just by analyzing software characteristics. In this paper we present an author imitation attack that allows to deceive current authorship attribution systems and mimic a coding style of a target developer. Withing this context we explore the potential of the existing attribution techniques to be deceived. Our results show that we are able to imitate the coding style of the developers based on the data collected from the popular source code repository, GitHub. To subvert author imitation attack, we propose a novel author obfuscation approach that allows us to hide the coding style of the author. Unlike existing obfuscation tools, this new obfuscation technique uses transformations that preserve code readability. We assess the effectiveness of our attacks on several datasets produced by actual developers from GitHub, and participants of the GoogleCodeJam competition. Throughout our experiments we show that the author hiding can be achieved by making sensible transformations which significantly reduce the likelihood of identifying the author's style to 0% by current authorship attribution systems.
2020-05-18
Sharma, Sarika, Kumar, Deepak.  2019.  Agile Release Planning Using Natural Language Processing Algorithm. 2019 Amity International Conference on Artificial Intelligence (AICAI). :934–938.
Once the requirement is gathered in agile, it is broken down into smaller pre-defined format called user stories. These user stories are then scoped in various sprint releases and delivered accordingly. Release planning in Agile becomes challenging when the number of user stories goes up in hundreds. In such scenarios it is very difficult to manually identify similar user stories and package them together into a release. Hence, this paper suggests application of natural language processing algorithms for identifying similar user stories and then scoping them into a release This paper takes the approach to build a word corpus for every project release identified in the project and then to convert the provided user stories into a vector of string using Java utility for calculating top 3 most occurring words from the given project corpus in a user story. Once all the user stories are represented as vector array then by using RV coefficient NLP algorithm the user stories are clustered into various releases of the software project. Using the proposed approach, the release planning for large and complex software engineering projects can be simplified resulting into efficient planning in less time. The automated commercial tools like JIRA and Rally can be enhanced to include suggested algorithms for managing release planning in Agile.
2020-01-21
Haddouti, Samia El, Ech-Cherif El Kettani, M. Dafir.  2019.  Analysis of Identity Management Systems Using Blockchain Technology. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1–7.
The emergence of Blockchain technology as the biggest innovations of the 21stcentury, has given rise to new concepts of Identity Management to deal with the privacy and security challenges on the one hand, and to enhance the decentralization and user control in transactions on Blockchain infrastructures on the other hand. This paper investigates and gives analysis of the most popular Identity Management Systems using Blockchain: uPort, Sovrin, and ShoCard. It then evaluates them under a set of features of digital identity that characterizes the successful of an Identity Management solution. The result of the comparative analysis is presented in a concise way to allow readers to find out easily which systems satisfy what requirements in order to select the appropriate one to fit into a specific scenario.
2020-03-23
Hyunki-Kim, Jinhyeok-Oh, Changuk-Jang, Okyeon-Yi, Juhong-Han, Hansaem-Wi, Chanil-Park.  2019.  Analysis of the Noise Source Entropy Used in OpenSSL’s Random Number Generation Mechanism. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :59–62.
OpenSSL is an open source library that implements the Secure Socket Layer (SSL), a security protocol used by the TCP/IP layer. All cryptographic systems require random number generation for many reasons, such as cryptographic key generation and protocol challenge/response, OpenSSL is also the same. OpenSSL can be run on a variety of operating systems. especially when generating random numbers on Unix-like operating systems, it can use /dev /(u)random [6], as a seed to add randomness. In this paper, we analyze the process provided by OpenSSL when random number generation is required. We also provide considerations for application developers and OpenSSL users to use /dev/urandom and real-time clock (nanoseconds of timespec structure) as a seed to generate cryptographic random numbers in the Unix family.
2020-04-13
M.R., Anala, Makker, Malika, Ashok, Aakanksha.  2019.  Anomaly Detection in Surveillance Videos. 2019 26th International Conference on High Performance Computing, Data and Analytics Workshop (HiPCW). :93–98.
Every public or private area today is preferred to be under surveillance to ensure high levels of security. Since the surveillance happens round the clock, data gathered as a result is huge and requires a lot of manual work to go through every second of the recorded videos. This paper presents a system which can detect anomalous behaviors and alarm the user on the type of anomalous behavior. Since there are a myriad of anomalies, the classification of anomalies had to be narrowed down. There are certain anomalies which are generally seen and have a huge impact on public safety, such as explosions, road accidents, assault, shooting, etc. To narrow down the variations, this system can detect explosion, road accidents, shooting, and fighting and even output the frame of their occurrence. The model has been trained with videos belonging to these classes. The dataset used is UCF Crime dataset. Learning patterns from videos requires the learning of both spatial and temporal features. Convolutional Neural Networks (CNN) extract spatial features and Long Short-Term Memory (LSTM) networks learn the sequences. The classification, using an CNN-LSTM model achieves an accuracy of 85%.
2020-03-23
Xuewei, Feng, Dongxia, Wang, Zhechao, Lin.  2019.  An Approach of Code Pointer Hiding Based on a Resilient Area. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). :204–209.
Code reuse attacks can bypass the DEP mechanism effectively. Meanwhile, because of the stealthy of the operation, it becomes one of the most intractable threats while securing the information system. Although the security solutions of code randomization and diversity can mitigate the threat at a certain extent, attackers can bypass these solutions due to the high cost and coarsely granularity, and the memory disclosure vulnerability is another magic weapon which can be used by attackers to bypass these solutions. After analyzing the principle of memory disclosure vulnerability, we propose a novel code pointer hiding method based on a resilient area. We expatiate how to create the resilient area and achieve code pointer hiding from four aspects, namely hiding return addresses in data pages, hiding function pointers in data pages, hiding target pointers of instruction JUMP in code pages, and hiding target pointers of instruction CALL in code pages. This method can stop attackers from reading and analyzing pages in memory, which is a critical stage in finding and creating ROP chains while executing a code reuse attack. Lastly, we test the method contrastively, and the results show that the method is feasible and effective while defending against ROP attacks.
2020-04-10
Repetto, M., Carrega, A., Lamanna, G..  2019.  An architecture to manage security services for cloud applications. 2019 4th International Conference on Computing, Communications and Security (ICCCS). :1—8.
The uptake of virtualization and cloud technologies has pushed novel development and operation models for the software, bringing more agility and automation. Unfortunately, cyber-security paradigms have not evolved at the same pace and are not yet able to effectively tackle the progressive disappearing of a sharp security perimeter. In this paper, we describe a novel cyber-security architecture for cloud-based distributed applications and network services. We propose a security orchestrator that controls pervasive, lightweight, and programmable security hooks embedded in the virtual functions that compose the cloud application, pursuing better visibility and more automation in this domain. Our approach improves existing management practice for service orchestration, by decoupling the management of the business logic from that of security. We also describe the current implementation stage for a programmable monitoring, inspection, and enforcement framework, which represents the ground technology for the realization of the whole architecture.
2020-05-18
Chen, Long.  2019.  Assertion Detection in Clinical Natural Language Processing: A Knowledge-Poor Machine Learning Approach. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :37–40.
Natural language processing (NLP) have been recently used to extract clinical information from free text in Electronic Health Record (EHR). In clinical NLP one challenge is that the meaning of clinical entities is heavily affected by assertion modifiers such as negation, uncertain, hypothetical, experiencer and so on. Incorrect assertion assignment could cause inaccurate diagnosis of patients' condition or negatively influence following study like disease modeling. Thus, clinical NLP systems which can detect assertion status of given target medical findings (e.g. disease, symptom) in clinical context are highly demanded. Here in this work, we propose a deep-learning system based on word embedding, RNN and attention mechanism (more specifically: Attention-based Bidirectional Long Short-Term Memory networks) for assertion detection in clinical notes. Unlike previous state-of-art methods which require knowledge input or feature engineering, our system is a knowledge poor machine learning system and can be easily extended or transferred to other domains. The evaluation of our system on public benchmarking corpora demonstrates that a knowledge poor deep-learning system can also achieve high performance for detecting negation and assertions comparing to state-of-the-art systems.
2020-01-21
Rana, Rima, Zaeem, Razieh Nokhbeh, Barber, K. Suzanne.  2019.  An Assessment of Blockchain Identity Solutions: Minimizing Risk and Liability of Authentication. 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI). :26–33.
Personally Identifiable Information (PII) is often used to perform authentication and acts as a gateway to personal and organizational information. One weak link in the architecture of identity management services is sufficient to cause exposure and risk identity. Recently, we have witnessed a shift in identity management solutions with the growth of blockchain. Blockchain-the decentralized ledger system-provides a unique answer addressing security and privacy with its embedded immutability. In a blockchain-based identity solution, the user is given the control of his/her identity by storing personal information on his/her device and having the choice of identity verification document used later to create blockchain attestations. Yet, the blockchain technology alone is not enough to produce a better identity solution. The user cannot make informed decisions as to which identity verification document to choose if he/she is not presented with tangible guidelines. In the absence of scientifically created practical guidelines, these solutions and the choices they offer may become overwhelming and even defeat the purpose of providing a more secure identity solution.We analyze different PII options given to users for authentication on current blockchain-based solutions. Based on our Identity Ecosystem model, we evaluate these options and their risk and liability of exposure. Powered by real world data of about 6,000 identity theft and fraud stories, our model recommends some authentication choices and discourages others. Our work paves the way for a truly effective identity solution based on blockchain by helping users make informed decisions and motivating blockchain identity solution providers to introduce better options to their users.
2020-03-16
Yadav, Geeta, Paul, Kolin.  2019.  Assessment of SCADA System Vulnerabilities. 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1737–1744.
SCADA system is an essential component for automated control and monitoring in many of the Critical Infrastructures (CI). Cyber-attacks like Stuxnet, Aurora, Maroochy on SCADA systems give us clear insight about the damage a determined adversary can cause to any country's security, economy, and health-care systems. An in-depth analysis of these attacks can help in developing techniques to detect and prevent attacks. In this paper, we focus on the assessment of SCADA vulnerabilities from the widely used National Vulnerability Database (NVD) until May 2019. We analyzed the vulnerabilities based on severity, frequency, availability, integrity and confidentiality impact, and Common Weaknesses. The number of reported vulnerabilities are increasing yearly. Approximately 89% of the attacks are the network exploits severely impacting availability of these systems. About 19% of the weaknesses are due to buffer errors due to the use of insecure and legacy operating systems. We focus on finding the answer to four key questions that are required for developing new technologies for securing SCADA systems. We believe this is the first study of its kind which looks at correlating SCADA attacks with publicly available vulnerabilities. Our analysis can provide security researchers with useful insights into SCADA critical vulnerabilities and vulnerable components, which need attention. We also propose a domain-specific vulnerability scoring system for SCADA systems considering the interdependency of the various components.
2020-02-17
Yin, Mingyong, Wang, Qixu, Cao, Mingsheng.  2019.  An Attack Vector Evaluation Method for Smart City Security Protection. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–7.
In the network security risk assessment on critical information infrastructure of smart city, to describe attack vectors for predicting possible initial access is a challenging task. In this paper, an attack vector evaluation model based on weakness, path and action is proposed, and the formal representation and quantitative evaluation method are given. This method can support the assessment of attack vectors based on known and unknown weakness through combination of depend conditions. In addition, defense factors are also introduced, an attack vector evaluation model of integrated defense is proposed, and an application example of the model is given. The research work in this paper can provide a reference for the vulnerability assessment of attack vector.
2020-03-16
Radoglou-Grammatikis, Panagiotis, Sarigiannidis, Panagiotis, Giannoulakis, Ioannis, Kafetzakis, Emmanouil, Panaousis, Emmanouil.  2019.  Attacking IEC-60870-5-104 SCADA Systems. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:41–46.
The rapid evolution of the Information and Communications Technology (ICT) services transforms the conventional electrical grid into a new paradigm called Smart Grid (SG). Even though SG brings significant improvements, such as increased reliability and better energy management, it also introduces multiple security challenges. One of the main reasons for this is that SG combines a wide range of heterogeneous technologies, including Internet of Things (IoT) devices as well as Supervisory Control and Data Acquisition (SCADA) systems. The latter are responsible for monitoring and controlling the automatic procedures of energy transmission and distribution. Nevertheless, the presence of these systems introduces multiple vulnerabilities because their protocols do not implement essential security mechanisms such as authentication and access control. In this paper, we focus our attention on the security issues of the IEC 60870-5-104 (IEC-104) protocol, which is widely utilized in the European energy sector. In particular, we provide a SCADA threat model based on a Coloured Petri Net (CPN) and emulate four different types of cyber attacks against IEC-104. Last, we used AlienVault's risk assessment model to evaluate the risk level that each of these cyber attacks introduces to our system to confirm our intuition about their severity.
2020-08-03
Al-Emadi, Sara, Al-Ali, Abdulla, Mohammad, Amr, Al-Ali, Abdulaziz.  2019.  Audio Based Drone Detection and Identification using Deep Learning. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :459–464.
In recent years, unmanned aerial vehicles (UAVs) have become increasingly accessible to the public due to their high availability with affordable prices while being equipped with better technology. However, this raises a great concern from both the cyber and physical security perspectives since UAVs can be utilized for malicious activities in order to exploit vulnerabilities by spying on private properties, critical areas or to carry dangerous objects such as explosives which makes them a great threat to the society. Drone identification is considered the first step in a multi-procedural process in securing physical infrastructure against this threat. In this paper, we present drone detection and identification methods using deep learning techniques such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Convolutional Recurrent Neural Network (CRNN). These algorithms will be utilized to exploit the unique acoustic fingerprints of the flying drones in order to detect and identify them. We propose a comparison between the performance of different neural networks based on our dataset which features audio recorded samples of drone activities. The major contribution of our work is to validate the usage of these methodologies of drone detection and identification in real life scenarios and to provide a robust comparison of the performance between different deep neural network algorithms for this application. In addition, we are releasing the dataset of drone audio clips for the research community for further analysis.
2020-03-09
Nadir, Ibrahim, Ahmad, Zafeer, Mahmood, Haroon, Asadullah Shah, Ghalib, Shahzad, Farrukh, Umair, Muhammad, Khan, Hassam, Gulzar, Usman.  2019.  An Auditing Framework for Vulnerability Analysis of IoT System. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :39–47.
Introduction of IoT is a big step towards the convergence of physical and virtual world as everyday objects are connected to the internet nowadays. But due to its diversity and resource constraint nature, the security of these devices in the real world has become a major challenge. Although a number of security frameworks have been suggested to ensure the security of IoT devices, frameworks for auditing this security are rare. We propose an open-source framework to audit the security of IoT devices covering hardware, firmware and communication vulnerabilities. Using existing open-source tools, we formulate a modular approach towards the implementation of the proposed framework. Standout features in the suggested framework are its modular design, extensibility, scalability, tools integration and primarily autonomous nature. The principal focus of the framework is to automate the process of auditing. The paper further mentions some tools that can be incorporated in different modules of the framework. Finally, we validate the feasibility of our framework by auditing an IoT device using proposed toolchain.
2020-04-13
Kim, Dongchil, Kim, Kyoungman, Park, Sungjoo.  2019.  Automatic PTZ Camera Control Based on Deep-Q Network in Video Surveillance System. 2019 International Conference on Electronics, Information, and Communication (ICEIC). :1–3.
Recently, Pan/Tilt/Zoom (PTZ) camera has been widely used in video surveillance systems. However, it is difficult to automatically control PTZ cameras according to moving objects in the surveillance area. This paper proposes an automatic camera control method based on a Deep-Q Network (DQN) for improving the recognition accuracy of anomaly actions in the video surveillance system. To generate PTZ camera control values, the proposed method uses the position and size information of the object which received from the video analysis system. Through implementation results, the proposed method can automatically control the PTZ camera according to moving objects.
2020-03-30
Bharati, Aparna, Moreira, Daniel, Brogan, Joel, Hale, Patricia, Bowyer, Kevin, Flynn, Patrick, Rocha, Anderson, Scheirer, Walter.  2019.  Beyond Pixels: Image Provenance Analysis Leveraging Metadata. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). :1692–1702.
Creative works, whether paintings or memes, follow unique journeys that result in their final form. Understanding these journeys, a process known as "provenance analysis," provides rich insights into the use, motivation, and authenticity underlying any given work. The application of this type of study to the expanse of unregulated content on the Internet is what we consider in this paper. Provenance analysis provides a snapshot of the chronology and validity of content as it is uploaded, re-uploaded, and modified over time. Although still in its infancy, automated provenance analysis for online multimedia is already being applied to different types of content. Most current works seek to build provenance graphs based on the shared content between images or videos. This can be a computationally expensive task, especially when considering the vast influx of content that the Internet sees every day. Utilizing non-content-based information, such as timestamps, geotags, and camera IDs can help provide important insights into the path a particular image or video has traveled during its time on the Internet without large computational overhead. This paper tests the scope and applicability of metadata-based inferences for provenance graph construction in two different scenarios: digital image forensics and cultural analytics.
2020-05-18
Thejaswini, S, Indupriya, C.  2019.  Big Data Security Issues and Natural Language Processing. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :1307–1312.
Whenever we talk about big data, the concern is always about the security of the data. In recent days the most heard about technology is the Natural Language Processing. This new and trending technology helps in solving the ever ending security problems which are not completely solved using big data. Starting with the big data security issues, this paper deals with addressing the topics related to cyber security and information security using the Natural Language Processing technology. Including the well-known cyber-attacks such as phishing identification and spam detection, this paper also addresses issues on information assurance and security such as detection of Advanced Persistent Threat (APT) in DNS and vulnerability analysis. The goal of this paper is to provide the overview of how natural language processing can be used to address cyber security issues.