Biblio

Found 895 results

Filters: Keyword is Collaboration  [Clear All Filters]
2021-08-11
Chen, Siyuan, Jung, Jinwook, Song, Peilin, Chakrabarty, Krishnendu, Nam, Gi-Joon.  2020.  BISTLock: Efficient IP Piracy Protection using BIST. 2020 IEEE International Test Conference (ITC). :1—5.
The globalization of IC manufacturing has increased the likelihood for IP providers to suffer financial and reputational loss from IP piracy. Logic locking prevents IP piracy by corrupting the functionality of an IP unless a correct secret key is inserted. However, existing logic-locking techniques can impose significant area overhead and performance impact (delay and power) on designs. In this work, we propose BISTLock, a logic-locking technique that utilizes built-in self-test (BIST) to isolate functional inputs when the circuit is locked. We also propose a set of security metrics and use the proposed metrics to quantify BISTLock's security strength for an open-source AES core. Our experimental results demonstrate that BISTLock is easy to implement and introduces an average of 0.74% area and no power or delay overhead across the set of benchmarks used for evaluation.
Chheng, Kimhok, Priyadi, Ardyono, Pujiantara, Margo, Mahindara, Vincentius Raki.  2020.  The Coordination of Dual Setting DOCR for Ring System Using Adaptive Modified Firefly Algorithm. 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA). :44—50.
Directional Overcurrent Relays (DOCRs) play an essential role in the power system protection to guarantee the reliability, speed of relay operation and avoiding mal-trip in the primary and backup relays when unintentional fault conditions occur in the system. Moreover, the dual setting protection scheme is more efficient protection schemes for offering fast response protection and providing flexibility in the coordination of relay. In this paper, the Adaptive Modified Firefly Algorithm (AMFA) is used to determine the optimal coordination of dual setting DOCRs in the ring distribution system. The AMFA is completed by choosing the minimum value of pickup current (\textbackslashtextbackslashpmbI\textbackslashtextbackslashpmbP) and time dial setting (TDS). On the other hand, dual setting DOCRs protection scheme also proposed for operating in both forward and reverse directions that consisted of individual time current characteristics (TCC) curve for each direction. The previous method is applied to the ring distribution system network of PT. Pupuk Sriwidjaja by considering the fault on each bus. The result illustration that the AMFA within dual setting protection scheme is significantly reaching the optimized coordination and the relay coordination is certain for all simulation scenarios with the minimum operation. The AMFA has been successfully implemented in MATLAB software programming.
Brooks, Richard, Wang, Kuang-Ching, Oakley, Jon, Tusing, Nathan.  2020.  Global Internet Traffic Routing and Privacy. 2020 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). :1—7.
Current Internet Protocol routing provides minimal privacy, which enables multiple exploits. The main issue is that the source and destination addresses of all packets appear in plain text. This enables numerous attacks, including surveillance, man-in-the-middle (MITM), and denial of service (DoS). The talk explains how these attacks work in the current network. Endpoints often believe that use of Network Address Translation (NAT), and Dynamic Host Configuration Protocol (DHCP) can minimize the loss of privacy.We will explain how the regularity of human behavior can be used to overcome these countermeasures. Once packets leave the local autonomous system (AS), they are routed through the network by the Border Gateway Protocol (BGP). The talk will discuss the unreliability of BGP and current attacks on the routing protocol. This will include an introduction to BGP injects and the PEERING testbed for BGP experimentation. One experiment we have performed uses statistical methods (CUSUM and F-test) to detect BGP injection events. We describe work we performed that applies BGP injects to Internet Protocol (IP) address randomization to replace fixed IP addresses in headers with randomized addresses. We explain the similarities and differences of this approach with virtual private networks (VPNs). Analysis of this work shows that BGP reliance on autonomous system (AS) numbers removes privacy from the concept, even though it would disable the current generation of MITM and DoS attacks. We end by presenting a compromise approach that creates software-defined data exchanges (SDX), which mix traffic randomization with VPN concepts. We contrast this approach with the Tor overlay network and provide some performance data.
2021-03-15
Bouzegag, Y., Teguig, D., Maali, A., Sadoudi, S..  2020.  On the Impact of SSDF Attacks in Hard Combination Schemes in Cognitive Radio Networks. 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP). :19–24.
One of the critical threats menacing the Cooperative Spectrum Sensing (CSS) in Cognitive Radio Networks (CRNs) is the Spectrum Sensing Data Falsification (SSDF) reports, which can deceive the decision of Fusion Center (FC) about the Primary User (PU) spectrum accessibility. In CSS, each CR user performs Energy Detection (ED) technique to detect the status of licensed frequency bands of the PU. This paper investigates the performance of different hard-decision fusion schemes (OR-rule, AND-rule, and MAJORITY-rule) in the presence of Always Yes and Always No Malicious User (AYMU and ANMU) over Rayleigh and Gaussian channels. More precisely, comparative study is conducted to evaluate the impact of such malicious users in CSS on the performance of various hard data combining rules in terms of miss detection and false alarm probabilities. Furthermore, computer simulations are carried out to show that the hard-decision fusion scheme with MAJORITY-rule is the best among hard-decision combination under AYMU attacks, OR-rule has the best detection performance under ANMU.
2021-08-11
Li, Shanghao, He, Shan, Li, Lin, Guo, Donghui.  2020.  IP Trading System with Blockchain on Web-EDA. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :164—168.
As the scale of integrated circuits continues to expand, electronic design automation (EDA) and intellectual property (IP) reuse play an increasingly important role in the integrated circuit design process. Although many Web-EDA platforms have begun to provide online EDA software to reduce the threshold for the use of EDA tools, IP protection on the Web- EDA platform is an issue. This article uses blockchain technology to design an IP trading system for the Web-EDA platform to achieve mutual trust and transactions between IP owners and users. The structure of the IP trading system is described in detail, and a blockchain wallet for the Web-EDA platform is developed.
He, Guorong, Dong, Chen, Liu, Yulin, Fan, Xinwen.  2020.  IPlock: An Effective Hybrid Encryption for Neuromorphic Systems IP Core Protection. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:612—616.
Recent advances in resistive synaptic devices have enabled the emergence of brain-inspired smart chips. These chips can execute complex cognitive tasks in digital signal processing precisely and efficiently using an efficient neuromorphic system. The neuromorphic synapses used in such chips, however, are different from the traditional integrated circuit architectures, thereby weakening their resistance to malicious transformation and intellectual property (IP) counterfeiting. Accordingly, in this paper, we propose an effective hybrid encryption methodology for IP core protection in neuromorphic computing systems, in-corporating elliptic curve cryptography and SM4 simultaneously. Experimental results confirm that the proposed method can implement real-time encryption of any number of crossbar arrays in neuromorphic systems accurately, while reducing the time overhead by 14.40%-26.08%.
2021-08-31
Hu, Hongsheng, Dobbie, Gillian, Salcic, Zoran, Liu, Meng, Zhang, Jianbing, Zhang, Xuyun.  2020.  A Locality Sensitive Hashing Based Approach for Federated Recommender System. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :836–842.
The recommender system is an important application in big data analytics because accurate recommendation items or high-valued suggestions can bring high profit to both commercial companies and customers. To make precise recommendations, a recommender system often needs large and fine-grained data for training. In the current big data era, data often exist in the form of isolated islands, and it is difficult to integrate the data scattered due to privacy security concerns. Moreover, privacy laws and regulations make it harder to share data. Therefore, designing a privacy-preserving recommender system is of paramount importance. Existing privacy-preserving recommender system models mainly adapt cryptography approaches to achieve privacy preservation. However, cryptography approaches have heavy overhead when performing encryption and decryption operations and they lack a good level of flexibility. In this paper, we propose a Locality Sensitive Hashing (LSH) based approach for federated recommender system. Our proposed efficient and scalable federated recommender system can make full use of multiple source data from different data owners while guaranteeing preservation of privacy of contributing parties. Extensive experiments on real-world benchmark datasets show that our approach can achieve both high time efficiency and accuracy under small privacy budgets.
2021-08-11
Li, Yuekang, Chen, Hongxu, Zhang, Cen, Xiong, Siyang, Liu, Chaoyi, Wang, Yi.  2020.  Ori: A Greybox Fuzzer for SOME/IP Protocols in Automotive Ethernet. 2020 27th Asia-Pacific Software Engineering Conference (APSEC). :495—499.
With the emergence of smart automotive devices, the data communication between these devices gains increasing importance. SOME/IP is a light-weight protocol to facilitate inter- process/device communication, which supports both procedural calls and event notifications. Because of its simplicity and capability, SOME/IP is getting adopted by more and more automotive devices. Subsequently, the security of SOME/IP applications becomes crucial. However, previous security testing techniques cannot fit the scenario of vulnerability detection SOME/IP applications due to miscellaneous challenges such as the difficulty of server-side testing programs in parallel, etc. By addressing these challenges, we propose Ori - a greybox fuzzer for SOME/IP applications, which features two key innovations: the attach fuzzing mode and structural mutation. The attach fuzzing mode enables Ori to test server programs efficiently, and the structural mutation allows Ori to generate valid SOME/IP packets to reach deep paths of the target program effectively. Our evaluation shows that Ori can detect vulnerabilities in SOME/IP applications effectively and efficiently.
Njova, Dion, Ogudo, Kingsley, Umenne, Patrice.  2020.  Packet Analysis of DNP3 protocol over TCP/IP at an Electrical Substation Grid modelled in OPNET. 2020 IEEE PES/IAS PowerAfrica. :1—5.
In this paper Intelligent Electronic Devices (IED) that use ethernet for communicating with substation devices on the grid where modelled in OPNET. There is a need to test the communication protocol performance over the network. A model for the substation communication network was implemented in OPNET. This was done for ESKOM, which is the electrical power generation and distribution authority in South Africa. The substation communication model consists of 10 ethernet nodes which simulate protection Intelligent Electronic Devices (IEDs), 13 ethernet switches, a server which simulates the substation Remote Terminal Unit (RTU) and the DNP3 Protocol over TCP/IP simulated on the model. DNP3 is a protocol that can be used in a power utility computer network to provide communication service for the grid components. It was selected as the communication protocol because it is widely used in the energy sector in South Africa. The network load and packet delay parameters were sampled when 10%, 50%, 90% and 100% of devices are online. Analysis of the results showed that with an increase in number of nodes there was an increase in packet delay as well as the network load. The load on the network should be taken into consideration when designing a substation communication network that requires a quick response such as a smart gird.
Fung, Carol, Pillai, Yadunandan.  2020.  A Privacy-Aware Collaborative DDoS Defence Network. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—5.
Distributed denial of service (DDoS) attacks can bring tremendous damage to online services and ISPs. Existing adopted mitigation methods either require the victim to have a sufficient number of resources for traffic filtering or to pay a third party cloud service to filter the traffic. In our previous work we proposed CoFence, a collaborative network that allows member domains to help each other in terms of DDoS traffic handling. In that network, victim servers facing a DDoS attack can redirect excessive connection requests to other helping servers in different domains for filtering. Only filtered traffic will continue to interact with the victim server. However, sending traffic to third party servers brings up the issue of privacy: specifically leaked client source IP addresses. In this work we propose a privacy protection mechanism for defense so that the helping servers will not be able to see the IP address of the client traffic while it has minimum impact to the data filtering function. We implemented the design through a test bed to demonstrated the feasibility of the proposed design.
Pan, Xiaoqin, Tang, Shaofei, Zhu, Zuqing.  2020.  Privacy-Preserving Multilayer In-Band Network Telemetry and Data Analytics. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :142—147.
As a new paradigm for the monitoring and troubleshooting of backbone networks, the multilayer in-band network telemetry (ML-INT) with deep learning (DL) based data analytics (DA) has recently been proven to be effective on realtime visualization and fine-grained monitoring. However, the existing studies on ML-INT&DA systems have overlooked the privacy and security issues, i.e., a malicious party can apply tapping in the data reporting channels between the data and control planes to illegally obtain plaintext ML-INT data in them. In this paper, we discuss a privacy-preserving DL-based ML-INT&DA system for realizing AI-assisted network automation in backbone networks in the form of IP-over-Optical. We first show a lightweight encryption scheme based on integer vector homomorphic encryption (IVHE), which is used to encrypt plaintext ML-INT data. Then, we architect a DL model for anomaly detection, which can directly analyze the ciphertext ML-INT data. Finally, we present the implementation and experimental demonstrations of the proposed system. The privacy-preserving DL-based ML-INT&DA system is realized in a real IP over elastic optical network (IP-over-EON) testbed, and the experimental results verify the feasibility and effectiveness of our proposal.
Meskanen, Tommi, Niemi, Valtteri, Kuusijäarvi, Jarkko.  2020.  Privacy-Preserving Peer Discovery for Group Management in p2p Networks. 2020 27th Conference of Open Innovations Association (FRUCT). :150—156.
The necessity for peer-to-peer (p2p) communications is obvious; current centralized solutions are capturing and storing too much information from the individual people communicating with each other. Privacy concerns with a centralized solution in possession of all the users data are a difficult matter. HELIOS platform introduces a new social-media platform that is not in control of any central operator, but brings the power of possession of the data back to the users. It does not have centralized servers that store and handle receiving/sending of the messages. Instead, it relies on the current open-source solutions available in the p2p communities to propagate the messages to the wanted recipients of the data and/or messages. The p2p communications also introduce new problems in terms of privacy and tracking of the user, as the nodes part of a p2p network can see what data the other nodes provide and ask for. How the sharing of data in a p2p network can be achieved securely, taking into account the user's privacy is a question that has not been fully answered so far. We do not claim we answer this question fully in this paper either, but we propose a set of protocols to help answer one specific problem. Especially, this paper proposes how to privately share data (end-point address or other) of the user between other users, provided that they have previously connected with each other securely, either offline or online.
2020-03-30
Thida, Aye, Shwe, Thanda.  2020.  Process Provenance-based Trust Management in Collaborative Fog Environment. 2020 IEEE Conference on Computer Applications(ICCA). :1–5.
With the increasing popularity and adoption of IoT technology, fog computing has been used as an advancement to cloud computing. Although trust management issues in cloud have been addressed, there are still very few studies in a fog area. Trust is needed for collaborating among fog nodes and trust can further improve the reliability by assisting in selecting the fog nodes to collaborate. To address this issue, we present a provenance based trust mechanism that traces the behavior of the process among fog nodes. Our approach adopts the completion rate and failure rate as the process provenance in trust scores of computing workload, especially obvious measures of trustworthiness. Simulation results demonstrate that the proposed system can effectively be used for collaboration in a fog environment.
2021-08-11
Potluri, Seetal, Aysu, Aydin, Kumar, Akash.  2020.  SeqL: Secure Scan-Locking for IP Protection. 2020 21st International Symposium on Quality Electronic Design (ISQED). :7—13.
Existing logic-locking attacks are known to successfully decrypt functionally correct key of a locked combinational circuit. It is possible to extend these attacks to real-world Silicon-based Intellectual Properties (IPs, which are sequential circuits) through scan-chains by selectively initializing the combinational logic and analyzing the responses. In this paper, we propose SeqL, which achieves functional isolation and locks selective flip-flop functional-input/scan-output pairs, thus rendering the decrypted key functionally incorrect. We conduct a formal study of the scan-locking problem and demonstrate automating our proposed defense on any given IP. We show that SeqL hides functionally correct keys from the attacker, thereby increasing the likelihood of the decrypted key being functionally incorrect. When tested on pipelined combinational benchmarks (ISCAS, MCNC), sequential benchmarks (ITC) and a fully-fledged RISC-V CPU, SeqL gave 100% resilience to a broad range of state-of-the-art attacks including SAT [1], Double-DIP [2], HackTest [3], SMT [4], FALL [5], Shift-and-Leak [6] and Multi-cycle attacks [7].
2021-02-01
Papadopoulos, A. V., Esterle, L..  2020.  Situational Trust in Self-aware Collaborating Systems. 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :91–94.
Trust among humans affects the way we interact with each other. In autonomous systems, this trust is often predefined and hard-coded before the systems are deployed. However, when systems encounter unfolding situations, requiring them to interact with others, a notion of trust will be inevitable. In this paper, we discuss trust as a fundamental measure to enable an autonomous system to decide whether or not to interact with another system, whether biological or artificial. These decisions become increasingly important when continuously integrating with others during runtime.
2021-06-28
Hannum, Corey, Li, Rui, Wang, Weitian.  2020.  Trust or Not?: A Computational Robot-Trusting-Human Model for Human-Robot Collaborative Tasks 2020 IEEE International Conference on Big Data (Big Data). :5689–5691.
The trust of a robot in its human partner is a significant issue in human-robot interaction, which is seldom explored in the field of robotics. This study addresses a critical issue of robots' trust in humans during the human-robot collaboration process based on the data of human motions, past interactions of the human-robot pair, and the human's current performance in the co-carry task. The trust level is evaluated dynamically throughout the collaborative task that allows the trust level to change if the human performs false positive actions, which can help the robot avoid making unpredictable movements and causing injury to the human. Experimental results showed that the robot effectively assisted the human in collaborative tasks through the proposed computational trust model.
2021-03-01
Nasir, J., Norman, U., Bruno, B., Dillenbourg, P..  2020.  When Positive Perception of the Robot Has No Effect on Learning. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :313–320.
Humanoid robots, with a focus on personalised social behaviours, are increasingly being deployed in educational settings to support learning. However, crafting pedagogical HRI designs and robot interventions that have a real, positive impact on participants' learning, as well as effectively measuring such impact, is still an open challenge. As a first effort in tackling the issue, in this paper we propose a novel robot-mediated, collaborative problem solving activity for school children, called JUSThink, aiming at improving their computational thinking skills. JUSThink will serve as a baseline and reference for investigating how the robot's behaviour can influence the engagement of the children with the activity, as well as their collaboration and mutual understanding while working on it. To this end, this first iteration aims at investigating (i) participants' engagement with the activity (Intrinsic Motivation Inventory-IMI), their mutual understanding (IMIlike) and perception of the robot (Godspeed Questionnaire); (ii) participants' performance during the activity, using several performance and learning metrics. We carried out an extensive user-study in two international schools in Switzerland, in which around 100 children participated in pairs in one-hour long interactions with the activity. Surprisingly, we observe that while a teams' performance significantly affects how team members evaluate their competence, mutual understanding and task engagement, it does not affect their perception of the robot and its helpfulness, a fact which highlights the need for baseline studies and multi-dimensional evaluation metrics when assessing the impact of robots in educational activities.
2021-03-09
Chakravorty, R., Prakash, J..  2020.  A Review on Prevention and Detection Schemes for Black Hole Attacks in MANET. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :801–806.
Mobile Ad hoc Network (MANET) is one of the emerging technologies to communicate between nodes and its decentralized structure, self-configuring nature are the few properties of this Ad hoc network. Due to its undefined structure, it has found its usage in the desired and temporary communication network. MANET has many routing protocols governing it and due to its changing topology, there can be many issues arise in recent times. Problems like no central node, limited energy, and the quality of service, performance, design issues, and security challenges have been bugging the researchers. The black hole attacks are the kind that cause ad hoc network to be at loss of information and make the source to believe that it has the actual least distance path to the destination, but in real scenario the packets do not get forwarded to neighbouring nodes. In this paper, we have discussed different solutions over the past years to deal with such attacks. A summary of the schemes with their results and drawbacks in terms of performance metrics is also given.
2021-06-30
Lim, Wei Yang Bryan, Xiong, Zehui, Niyato, Dusit, Huang, Jianqiang, Hua, Xian-Sheng, Miao, Chunyan.  2020.  Incentive Mechanism Design for Federated Learning in the Internet of Vehicles. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1—5.
In the Internet of Vehicles (IoV) paradigm, a model owner is able to leverage on the enhanced capabilities of Intelligent Connected Vehicles (ICV) to develop promising Artificial Intelligence (AI) based applications, e.g., for traffic efficiency. However, in some cases, a model owner may have insufficient data samples to build an effective AI model. To this end, we propose a Federated Learning (FL) based privacy preserving approach to facilitate collaborative FL among multiple model owners in the IoV. Our system model enables collaborative model training without compromising data privacy given that only the model parameters instead of the raw data are exchanged within the federation. However, there are two main challenges of incentive mismatches between workers and model owners, as well as among model owners. For the former, we leverage on the self-revealing mechanism in contract theory under information asymmetry. For the latter, we use the coalitional game theory approach that rewards model owners based on their marginal contributions. The numerical results validate the performance efficiency of our proposed hierarchical incentive mechanism design.
2021-05-05
Zhao, Bushi, Zhang, Hao, Luo, Yixi.  2020.  Automatic Error Correction Technology for the Same Field in the Same Kind of Power Equipment Account Data. 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI). :153—157.
Account data of electrical power system is the link of all businesses in the whole life cycle of equipment. It is of great significance to improve the data quality of power equipment account data for improving the information level of power enterprises. In the past, there was only the error correction technology to check whether it was empty and whether it contained garbled code. The error correction technology for same field of the same kind of power equipment account data is proposed in this paper. Combined with the characteristics of production business, the possible similar power equipment can be found through the function location type and other fields of power equipment account data. Based on the principle of search scoring, the horizontal comparison is used to search and score in turn. Finally, the potential spare parts and existing data quality are identified according to the scores. And judge whether it is necessary to carry out inspection maintenance.
2021-04-09
Ozkan, N., Tarhan, A. K., Gören, B., Filiz, İ, Özer, E..  2020.  Harmonizing IT Frameworks and Agile Methods: Challenges and Solutions for the case of COBIT and Scrum. 2020 15th Conference on Computer Science and Information Systems (FedCSIS). :709—719.
Information Technology (IT) is a complex domain. In order to properly manage IT related processes, several frameworks including ITIL (Information Technologies Infrastructure Library), COBIT (Control OBjectives for Information and related Technologies), IT Service CMMI (IT Service Capability Maturity Model) and many others have emerged in recent decades. Meanwhile, the prevalence of Agile methods has increased, posing the coexistence of Agile approach with different IT frameworks already adopted in organizations. More specifically, the pursuit of being agile in the area of digitalization pushes organizations to go for agile transformation while preserving full compliance to IT frameworks for the sake of their survival. The necessity for this coexistence, however, brings its own challenges and solutions for harmonizing the requirements of both parties. In this paper, we focus on harmonizing the requirements of COBIT and Scrum in a same organization, which is especially challenging when a full compliance to COBIT is expected. Therefore, this study aims to identifying the challenges of and possible solutions for the coexistence of Scrum and COBIT (version 4.1 in this case) in an organization, by considering two case studies: one from the literature and the case of Akbank delivered in this study. Thus, it extends the corresponding previous case study from two points: adds one more case study to enrich the results from the previous case study and provides more opportunity to make generalization by considering two independent cases.
2021-05-20
Neema, Himanshu, Sztipanovits, Janos, Hess, David J., Lee, Dasom.  2020.  TE-SAT: Transactive Energy Simulation and Analysis Toolsuite. 2020 IEEE Workshop on Design Automation for CPS and IoT (DESTION). :19—20.

Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.

2021-03-16
Netalkar, P. P., Maheshwari, S., Raychaudhuri, D..  2020.  Evaluation of Network Assisted Handoffs in Heterogeneous Networks. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—9.

This paper describes a novel distributed mobility management (DMM) scheme for the "named-object" information centric network (ICN) architecture in which the routers forward data based on unique identifiers which are dynamically mapped to the current network addresses of a device. The work proposes and evaluates two specific handover schemes namely, hard handoff with rebinding and soft handoff with multihoming intended to provide seamless data transfer with improved throughput during handovers. The evaluation of the proposed handover schemes using system simulation along with proof-of-concept implementation in ORBIT testbed is described. The proposed handoff and scheduling throughput gains are 12.5% and 44% respectively over multiple interfaces when compared to traditional IP network with equal share split scheme. The handover performance with respect to RTT and throughput demonstrate the benefits of clean slate network architecture for beyond 5G networks.

Jahanian, M., Chen, J., Ramakrishnan, K. K..  2020.  Managing the Evolution to Future Internet Architectures and Seamless Interoperation. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—11.

With the increasing diversity of application needs (datacenters, IoT, content retrieval, industrial automation, etc.), new network architectures are continually being proposed to address specific and particular requirements. From a network management perspective, it is both important and challenging to enable evolution towards such new architectures. Given the ubiquity of the Internet, a clean-slate change of the entire infrastructure to a new architecture is impractical. It is believed that we will see new network architectures coming into existence with support for interoperability between separate architectural islands. We may have servers, and more importantly, content, residing in domains having different architectures. This paper presents COIN, a content-oriented interoperability framework for current and future Internet architectures. We seek to provide seamless connectivity and content accessibility across multiple of these network architectures, including the current Internet. COIN preserves each domain's key architectural features and mechanisms, while allowing flexibility for evolvability and extensibility. We focus on Information-Centric Networks (ICN), the prominent class of Future Internet architectures. COIN avoids expanding domain-specific protocols or namespaces. Instead, it uses an application-layer Object Resolution Service to deliver the right "foreign" names to consumers. COIN uses translation gateways that retain essential interoperability state, leverages encryption for confidentiality, and relies on domain-specific signatures to guarantee provenance and data integrity. Using NDN and MobilityFirst as important candidate solutions of ICN, and IP, we evaluate COIN. Measurements from an implementation of the gateways show that the overhead is manageable and scales well.

2021-06-24
Liu, Zhibin, Liu, Ziang, Huang, Yuanyuan, Liu, Xin, Zhou, Xiaokang, Zhou, Rui.  2020.  A Research of Distributed Security and QoS Testing Framework. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :174—181.
Since the birth of the Internet, the quality of network service has been a widespread concerned problem. With the continuous development of communication and information technology, people gradually realized that the contradiction between the limited resources and the business requirements of network cannot be fundamentally solved. In this paper, we design and develop a distributed security quality of service testing framework called AweQoS(AwesomeQoS), to adapt to the current complex network environment. This paper puts forward the necessity that some security tests should be closely combined with quality of service testing, and further discusses the basic methods of distributed denial of service attack and defense. We introduce the design idea and working process of AweQoS in detail, and introduce a bandwidth test method based on user datagram protocol. Experimental results show that this new test method has better test performance and potential under the AweQoS framework.