Biblio

Filters: Keyword is RPL  [Clear All Filters]
2020-12-21
Sanila, A., Mahapatra, B., Turuk, A. K..  2020.  Performance Evaluation of RPL protocol in a 6LoWPAN based Smart Home Environment. 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA). :1–6.
The advancement in technologies like IoT, device-to-device communication lead to concepts like smart home and smart cities, etc. In smart home architecture, different devices such as home appliances, personal computers, surveillance cameras, etc. are connected to the Internet and enable the user to monitor and control irrespective of time and location. IPv6-enabled 6LoWPAN is a low-power, low-range communication protocol designed and developed for the short-range IoT applications. 6LoWPAN is based on IEEE 802.15.4 protocol and IPv6 network protocol for low range wireless applications. Although 6LoWPAN supports different routing protocols, RPL is the widely used routing protocol for low power and lossy networks. In this work, we have taken an IoT enabled smart home environment, in which 6LoWPAN is used as a communication and RPL as a routing protocol. The performance of this proposed network model is analyzed based on the different performance metrics such as latency, PDR, and throughput. The proposed model is simulated using Cooja simulator running over the Contiki OS. Along with the Cooja simulator, the network analyzer tool Wireshark is used to analyze the network behaviors.
2021-02-16
IBRAHIMY, S., LAMAAZI, H., BENAMAR, N..  2020.  RPL Assessment using the Rank Attack in Static and Mobile Environments. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT). :1—6.
Routing protocol running over low power and lossy networks (RPL) is currently one of the main routing protocols for the Internet of Things (IoT). This protocol has some vulnerabilities that can be exploited by attackers to change its behavior and deteriorate its performance. In the RPL rank attack, a malicious node announces a wrong rank, which leads the neighboring’s nodes to choose this node as a preferred parent. In this study, we used different metrics to assess RPL protocol in the presence of misbehaving nodes, namely the overhead, convergence time, energy consumption, preferred parent changes, and network lifetime. Our simulations results show that a mobile environment is more damaged by the rank attack than a static environment.
2020-12-21
Samuel, C., Alvarez, B. M., Ribera, E. Garcia, Ioulianou, P. P., Vassilakis, V. G..  2020.  Performance Evaluation of a Wormhole Detection Method using Round-Trip Times and Hop Counts in RPL-Based 6LoWPAN Networks. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.
The IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) has been standardized to support IP over lossy networks. RPL (Routing Protocol for Low-Power and Lossy Networks) is the common routing protocol for 6LoWPAN. Among various attacks on RPL-based networks, the wormhole attack may cause severe network disruption and is one of the hardest to detect. We have designed and implemented in ContikiOS a wormhole detection technique for 6LoWPAN, that uses round-trip times and hop counts. In addition, the performance of this technique has been evaluated in terms of power, CPU, memory, and communication overhead.
2021-03-09
Oakley, I..  2020.  Solutions to Black Hole Attacks in MANETs. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.
Self-organising networks, such as mobile ad-hoc networks (MANETs), are growing more and more in importance each day. However, due to their nature and constraints MANETs are vulnerable to a wide array of attacks, such as black hole attacks. Furthermore, there are numerous routing protocols in use in MANETs, and what works for one might not for another. In this paper, we present a review of previous surveys of black hole attack solutions, followed by a collation of recently published papers categorised by original routing protocol and evaluated on a set of common metrics. Finally, we suggest areas for further research.
2020-01-13
Yugha, R., Chithra, S..  2019.  Attribute Based Trust Evaluation for Secure RPL Protocol in IoT Environment. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–7.
Internet of Things (IoT) is an advanced automation technology and analytics systems which connected physical objects that have access through the Internet and have their unique flexibility and an ability to be suitable for any environment. There are some critical applications like smart health care system, in which the data collection, sharing and routing through IoT has to be handled in sensitive way. The IPv6 Routing Protocol for LL(Low-power and Lossy) networks (RPL) is the routing protocols to ensure reliable data transfer in 6LOWPAN networks. However, RPL is vulnerable to number of security attacks which creates a major impact on energy consumption and memory requirements which is not suitable for energy constraint networks like IoT. This requires secured RPL protocol to be used for critical data transfer. This paper introduces a novel approach of combining a lightweight LBS (Location Based Service) authentication and Attribute Based Trust Evaluation (ABTE). The algorithm has been implemented for smart health care system and analyzed how its perform in the RPL protocol for IoT constrained environments.
2020-06-01
Zhang, Tianchen, Zhang, Taimin, Ji, Xiaoyu, Xu, Wenyuan.  2019.  Cuckoo-RPL: Cuckoo Filter based RPL for Defending AMI Network from Blackhole Attacks. 2019 Chinese Control Conference (CCC). :8920—8925.

Advanced metering infrastructure (AMI) is a key component in the smart grid. Transmitting data robustly and reliably between the tremendous smart meters in the AMI is one of the most crucial tasks for providing various services in smart grid. Among the many efforts for designing practical routing protocols for the AMI, the Routing Protocol for Low-Power and Lossy Networks (RPL) proposed by the IETF ROLL working group is considered the most consolidated candidate. Resent research has shown cyber attacks such as blackhole attack and version number attack can seriously damage the performance of the network implementing RPL. The main reason that RPL is vulnerable to these kinds of attacks is the lack an authentication mechanism. In this paper, we study the impact of blackhole attacks on the performance of the AMI network and proposed a new blackhole attack that can bypass the existing defense mechanism. Then, we propose a cuckoo filter based RPL to defend the AMI network from blackhole attacks. We also give the security analysis of the proposed method.

2020-01-13
Farzaneh, Behnam, Montazeri, Mohammad Ali, Jamali, Shahram.  2019.  An Anomaly-Based IDS for Detecting Attacks in RPL-Based Internet of Things. 2019 5th International Conference on Web Research (ICWR). :61–66.
The Internet of Things (IoT) is a concept that allows the networking of various objects of everyday life and communications on the Internet without human interaction. The IoT consists of Low-Power and Lossy Networks (LLN) which for routing use a special protocol called Routing over Low-Power and Lossy Networks (RPL). Due to the resource-constrained nature of RPL networks, they may be exposed to a variety of internal attacks. Neighbor attack and DIS attack are the specific internal attacks at this protocol. This paper presents an anomaly-based lightweight Intrusion Detection System (IDS) based on threshold values for detecting attacks on the RPL protocol. The results of the simulation using Cooja show that the proposed model has a very high True Positive Rate (TPR) and in some cases, it can be 100%, while the False Positive Rate (FPR) is very low. The results show that the proposed model is fully effective in detecting attacks and applicable to large-scale networks.
Verma, Abhishek, Ranga, Virender.  2019.  ELNIDS: Ensemble Learning based Network Intrusion Detection System for RPL based Internet of Things. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1–6.
Internet of Things is realized by a large number of heterogeneous smart devices which sense, collect and share data with each other over the internet in order to control the physical world. Due to open nature, global connectivity and resource constrained nature of smart devices and wireless networks the Internet of Things is susceptible to various routing attacks. In this paper, we purpose an architecture of Ensemble Learning based Network Intrusion Detection System named ELNIDS for detecting routing attacks against IPv6 Routing Protocol for Low-Power and Lossy Networks. We implement four different ensemble based machine learning classifiers including Boosted Trees, Bagged Trees, Subspace Discriminant and RUSBoosted Trees. To evaluate proposed intrusion detection model we have used RPL-NIDDS17 dataset which contains packet traces of Sinkhole, Blackhole, Sybil, Clone ID, Selective Forwarding, Hello Flooding and Local Repair attacks. Simulation results show the effectiveness of the proposed architecture. We observe that ensemble of Boosted Trees achieve the highest Accuracy of 94.5% while Subspace Discriminant method achieves the lowest Accuracy of 77.8 % among classifier validation methods. Similarly, an ensemble of RUSBoosted Trees achieves the highest Area under ROC value of 0.98 while lowest Area under ROC value of 0.87 is achieved by an ensemble of Subspace Discriminant among all classifier validation methods. All the implemented classifiers show acceptable performance results.
van Kerkhoven, Jason, Charlebois, Nathaniel, Robertson, Alex, Gibson, Brydon, Ahmed, Arslan, Bouida, Zied, Ibnkahla, Mohamed.  2019.  IPv6-Based Smart Grid Communication over 6LoWPAN. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Smart Grid is a major element of the Smart City concept that enables two-way communication of energy data between electric utilities and their consumers. These communication technologies are going through sharp modernization to meet future demand growth and to achieve reliability, security, and efficiency of the electric grid. In this paper, we implement an IPv6 based two-way communication system between the transformer agent (TA), installed at local electric transformer and various customer agents (CAs), connected to customer's smart meter. Various homes share their energy usage with the TA which in turn sends the utility's recommendations to the CAs. Raspberry Pi is used as hardware for all the CAs and the TA. We implement a self-healing mesh network between all nodes using OpenLab IEEE 802.15.4 chips and Routing Protocol for Low-Power and Lossy Networks (RPL), and the data is secured by RSA/AES keys. Several tests have been conducted in real environments, inside and outside of Carleton University, to test the performance of this communication network in various obstacle settings. In this paper, we highlight the details behind the implementation of this IPv6-based smart grid communication system, the related challenges, and the proposed solutions.
2020-02-26
Thulasiraman, Preetha, Wang, Yizhong.  2019.  A Lightweight Trust-Based Security Architecture for RPL in Mobile IoT Networks. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.

Military communities have come to rely heavily on commercial off the shelf (COTS) standards and technologies for Internet of Things (IoT) operations. One of the major obstacles to military use of COTS IoT devices is the security of data transfer. In this paper, we successfully design and develop a lightweight, trust-based security architecture to support routing in a mobile IoT network. Specifically, we modify the RPL IoT routing algorithm using common security techniques, including a nonce identity value, timestamp, and network whitelist. Our approach allows RPL to select a routing path over a mobile IoT wireless network based on a computed node trust value and average received signal strength indicator (ARSSI) value across network members. We conducted simulations using the Cooja network simulator and Wireshark to validate the algorithm against stipulated threat models. We demonstrate that our algorithm can protect the network against Denial of Service (DoS) and Sybil based identity attacks. We also show that the control overhead required for our algorithm is less than 5% and that the packet delivery rate improves by nearly 10%.

2020-06-01
Nandhini, P.S., Mehtre, B.M..  2019.  Intrusion Detection System Based RPL Attack Detection Techniques and Countermeasures in IoT: A Comparison. 2019 International Conference on Communication and Electronics Systems (ICCES). :666—672.

Routing Protocol for Low power and Lossy Network (RPL) is a light weight routing protocol designed for LLN (Low Power Lossy Networks). It is a source routing protocol. Due to constrained nature of resources in LLN, RPL is exposed to various attacks such as blackhole attack, wormhole attack, rank attack, version attack, etc. IDS (Intrusion Detection System) is one of the countermeasures for detection and prevention of attacks for RPL based loT. Traditional IDS techniques are not suitable for LLN due to certain characteristics like different protocol stack, standards and constrained resources. In this paper, we have presented various IDS research contribution for RPL based routing attacks. We have also classified the proposed IDS in the literature, according to the detection techniques. Therefore, this comparison will be an eye-opening stuff for future research in mitigating routing attacks for RPL based IoT.

Patel, Himanshu B., Jinwala, Devesh C..  2019.  Blackhole Detection in 6LoWPAN Based Internet of Things: An Anomaly Based Approach. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :947—954.

The Internet of things networks is vulnerable to many DOS attacks. Among them, Blackhole attack is one of the severe attacks as it hampers communication among network devices. In general, the solutions presented in the literature for Blackhole detection are not efficient. In addition, the existing approaches do not factor-in, the consumption in resources viz. energy, bandwidth and network lifetime. Further, these approaches are also insensitive to the mechanism used for selecting a parent in on Blackhole formation. Needless to say, a blackhole node if selected as parent would lead to orchestration of this attack trivially and hence it is an important factor in selection of a parent. In this paper, we propose SIEWE (Strainer based Intrusion Detection of Blackhole in 6LoWPAN for the Internet of Things) - an Intrusion detection mechanism to identify Blackhole attack on Routing protocol RPL in IoT. In contrast to the Watchdog based approaches where every node in network runs in promiscuous mode, SIEWE filters out suspicious nodes first and then verifies the behavior of those nodes only. The results that we obtain, show that SIEWE improves the Packet Delivery Ratio (PDR) of the system by blacklisting malicious Blackhole nodes.

2019-02-13
Semedo, Felisberto, Moradpoor, Naghmeh, Rafiq, Majid.  2018.  Vulnerability Assessment of Objective Function of RPL Protocol for Internet of Things. Proceedings of the 11th International Conference on Security of Information and Networks. :1:1–1:6.
The Internet of Things (IoT) can be described as the ever-growing global network of objects with built-in sensing and communication interfaces such as sensors, Global Positioning devices (GPS) and Local Area Network (LAN) interfaces. Security is by far one of the biggest challenges in IoT networks. This includes secure routing which involves the secure creation of traffic routes and secure transmission of routed packets from a source to a destination. The Routing Protocol for Low-power and Lossy network (RPL) is one of the popular IoT's routing protocol that supports IPv6 communication. However, it suffers from having a basic system for supporting secure routing procedure which makes the RPL vulnerable to many attacks. This includes rank attack manipulation. Objective Function (OF) is one of the extreme importance features of RPL which influences an IoT network in terms of routing strategies as well as network topology. However, current literature lacks study of vulnerability analysis of OFs. Therefore, this paper aims to investigate the vulnerability assessment of OF of RPL protocol. For this, we focus on the rank attack manipulation and two popular OFs: Objective Function Zero (OF0) and the Minimum Rank with Hysteresis Objective Function (MRHOF).
2019-01-16
Choudhary, S., Kesswani, N..  2018.  Detection and Prevention of Routing Attacks in Internet of Things. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1537–1540.

Internet of things (IoT) is the smart network which connects smart objects over the Internet. The Internet is untrusted and unreliable network and thus IoT network is vulnerable to different kind of attacks. Conventional encryption and authentication techniques sometimes fail on IoT based network and intrusion may succeed to destroy the network. So, it is necessary to design intrusion detection system for such network. In our paper, we detect routing attacks such as sinkhole and selective forwarding. We have also tried to prevent our network from these attacks. We designed detection and prevention algorithm, i.e., KMA (Key Match Algorithm) and CBA (Cluster- Based Algorithm) in MatLab simulation environment. We gave two intrusion detection mechanisms and compared their results as well. True positive intrusion detection rate for our work is between 50% to 80% with KMA and 76% to 96% with CBA algorithm.

2019-08-26
Asati, V. K., Pilli, E. S., Vipparthi, S. K., Garg, S., Singhal, S., Pancholi, S..  2018.  RMDD: Cross Layer Attack in Internet of Things. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :172-178.

The existing research on the Internet of Things(IoT) security mainly focuses on attack and defense on a single protocol layer. Increasing and ubiquitous use of loT also makes it vulnerable to many attacks. An attacker try to performs the intelligent, brutal and stealthy attack that can reduce the risk of being detected. In these kinds of attacks, the attackers not only restrict themselves to a single layer of protocol stack but they also try to decrease the network performance and throughput by a simultaneous and coordinated attack on different layers. A new class of attacks, termed as cross-layer attack became prominent due to lack of interaction between MAC, routing and upper layers. These attacks achieve the better effect with reduced cost. Research has been done on cross-layer attacks in other domains like Cognitive Radio Network(CRN), Wireless Sensor Networks(WSN) and ad-hoc networks. However, our proposed scheme of cross-layer attack in IoT is the first paper to the best of our knowledge. In this paper, we have proposed Rank Manipulation and Drop Delay(RMDD) cross-layer attack in loT, we have investigated how small intensity attack on Routing protocol for low power lossy networks (RPL) degrades the overall application throughput. We have exploited the Rank system of the RPL protocol to implement the attacks. Rank is given to each node in the graph, and it shows its position in the network. If the rank could be manipulated in some manner, then the network topology can be modified. Simulation results demonstrate that the proposed attacks degrade network performance very much in terms of the throughput, latency, and connectivity.

2019-09-09
Karlsson, J., Dooley, L. S., Pulkkis, G..  2018.  Secure Routing for MANET Connected Internet of Things Systems. 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). :114-119.

This paper presents a contemporary review of communication architectures and topographies for MANET-connected Internet-of-Things (IoT) systems. Routing protocols for multi-hop MANETs are analyzed with a focus on the standardized Routing Protocol for Low-power and Lossy Networks. Various security threats and vulnerabilities in current MANET routing are described and security enhanced routing protocols and trust models presented as methodologies for supporting secure routing. Finally, the paper identifies some key research challenges in the emerging domain of MANET-IoT connectivity.

2019-03-11
Mehta, R., Parmar, M. M..  2018.  Trust based mechanism for Securing IoT Routing Protocol RPL against Wormhole amp;Grayhole Attacks. 2018 3rd International Conference for Convergence in Technology (I2CT). :1–6.
Internet of Things is attracting a lot of interest in the modern world and has become a part of daily life leading to a large scale of distribution of Low power and Lossy Networks (LLN). For such networks constrained by low power and storage, IETF has proposed RPL an open standard routing protocol. However RPL protocol is exposed to a number of attacks which may degrade the performance and resources of the network leading to incorrect output. In this paper, to address Wormhole and Grayhole attack we propose a light weight Trust based mechanism. The proposed method uses direct trust which is computed based on node properties and Indirect Trust which is based on opinion of the neighboring nodes. The proposed method is energy friendly and does not impose excessive overhead on network traffic.
2020-05-26
Sahay, Rashmi, Geethakumari, G., Mitra, Barsha, Thejas, V..  2018.  Exponential Smoothing based Approach for Detection of Blackhole Attacks in IoT. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–6.
Low power and lossy network (LLN) comprising of constrained devices like sensors and RFIDs, is a major component in the Internet of Things (IoT) environment as these devices provide global connectivity to physical devices or “Things”. LLNs are tied to the Internet or any High Performance Computing environment via an adaptation layer called 6LoWPAN (IPv6 over Low power Personal Area Network). The routing protocol used by 6LoWPAN is RPL (IPv6 Routing Protocol over LLN). Like many other routing protocols, RPL is susceptible to blackhole attacks which cause topological isolation for a subset of nodes in the LLN. A malicious node instigating the blackhole attack drops received packets from nodes in its subtree which it is supposed to forward. Thus, the malicious node successfully isolates nodes in its subtree from the rest of the network. In this paper, we propose an algorithm based on the concept of exponential smoothing to detect the topological isolation of nodes due to blackhole attack. Exponential smoothing is a technique for smoothing time series data using the exponential window function and is used for short, medium and long term forecasting. In our proposed algorithm, exponential smoothing is used to estimate the next arrival time of packets at the sink node from every other node in the LLN. Using this estimation, the algorithm is designed to identify the malicious nodes instigating blackhole attack in real time.
2018-02-28
Shreenivas, Dharmini, Raza, Shahid, Voigt, Thiemo.  2017.  Intrusion Detection in the RPL-connected 6LoWPAN Networks. Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security. :31–38.
The interconnectivity of 6LoWPAN networks with the Internet raises serious security concerns, as constrained 6LoWPAN devices are accessible anywhere from the untrusted global Internet. Also, 6LoWPAN devices are mostly deployed in unattended environments, hence easy to capture and clone. Despite that state of the art crypto solutions provide information security, IPv6 enabled smart objects are vulnerable to attacks from outside and inside 6LoWPAN networks that are aimed to disrupt networks. This paper attempts to identify intrusions aimed to disrupt the Routing Protocol for Low-Power and Lossy Networks (RPL).In order to improve the security within 6LoWPAN networks, we extend SVELTE, an intrusion detection system for the Internet of Things, with an intrusion detection module that uses the ETX (Expected Transmissions) metric. In RPL, ETX is a link reliability metric and monitoring the ETX value can prevent an intruder from actively engaging 6LoWPAN nodes in malicious activities. We also propose geographic hints to identify malicious nodes that conduct attacks against ETX-based networks. We implement these extensions in the Contiki OS and evaluate them using the Cooja simulator.
Alzubaidi, Mahmood, Anbar, Mohammed, Hanshi, Sabri M..  2017.  Neighbor-Passive Monitoring Technique for Detecting Sinkhole Attacks in RPL Networks. Proceedings of the 2017 International Conference on Computer Science and Artificial Intelligence. :173–182.
Internet Protocol version 6 (IPv6) over Low-power Wireless Personal Area Networks (6LoWPAN) is extensively used in wireless sensor networks due to its capability to transmit IPv6 packets with low bandwidth and limited resources. 6LoWPAN has several operations in each layer. Most existing security challenges are focused on the network layer, which is represented by the Routing Protocol for Low-power and Lossy Networks (RPL). 6LoWPAN, with its routing protocol (RPL), usually uses nodes that have constrained resources (memory, power, and processor). In addition, RPL messages are exchanged among network nodes without any message authentication mechanism, thereby exposing the RPL to various attacks that may lead to network disruptions. A sinkhole attack utilizes the vulnerabilities in an RPL and attracts considerable traffic by advertising falsified data that change the routing preference for other nodes. This paper proposes the neighbor-passive monitoring technique (NPMT) for detecting sinkhole attacks in RPL-based networks. The proposed technique is evaluated using the COOJA simulator in terms of power consumption and detection accuracy. Moreover, NPMT is compared with popular detection mechanisms.
2018-03-19
Mavani, M., Asawa, K..  2017.  Experimental Study of IP Spoofing Attack in 6LoWPAN Network. 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence. :445–449.

6L0WPAN is a communication protocol for Internet of Things. 6LoWPAN is IPv6 protocol modified for low power and lossy personal area networks. 6LoWPAN inherits threats from its predecessors IPv4 and IPv6. IP spoofing is a known attack prevalent in IPv4 and IPv6 networks but there are new vulnerabilities which creates new paths, leading to the attack. This study performs the experimental study to check the feasibility of performing IP spoofing attack on 6LoWPAN Network. Intruder misuses 6LoWPAN control messages which results into wrong IPv6-MAC binding in router. Attack is also simulated in cooja simulator. Simulated results are analyzed for finding cost to the attacker in terms of energy and memory consumption.

2018-05-24
Agustin, J. P. C., Jacinto, J. H., Limjoco, W. J. R., Pedrasa, J. R. I..  2017.  IPv6 Routing Protocol for Low-Power and Lossy Networks Implementation in Network Simulator \#x2014; 3. TENCON 2017 - 2017 IEEE Region 10 Conference. :3129–3134.

Wireless Sensor Networks (WSN) are widely used to monitor and control physical environments. An efficient energy management system is needed to be able to deploy these networks in lossy environments while maintaining reliable communication. The IPv6 Routing Protocol for Low-Power and Lossy networks is a routing protocol designed to properly manage energy without compromising reliability. This protocol has currently been implemented in Contiki OS, TinyOS, and OMNeT++ Castalia. But these applications also simulate all operation mechanics of a specified hardware model instead of just simulating the protocol only, thus adding unnecessary overhead and slowing down simulations on RPL. In light of this, we have implemented a working ns-3 implementation of RPL with support for multiple RPL instances with the use of a global repair mechanism. The behavior and output of our simulator was compared to Cooja for verification, and the results are similar with a minor difference in rank computation.

2018-04-11
Djedjig, N., Tandjaoui, D., Medjek, F., Romdhani, I..  2017.  New Trust Metric for the RPL Routing Protocol. 2017 8th International Conference on Information and Communication Systems (ICICS). :328–335.

Establishing trust relationships between routing nodes represents a vital security requirement to establish reliable routing processes that exclude infected or selfish nodes. In this paper, we propose a new security scheme for the Internet of things and mainly for the RPL (Routing Protocol for Low-power and Lossy Networks) called: Metric-based RPL Trustworthiness Scheme (MRTS). The primary aim is to enhance RPL security and deal with the trust inference problem. MRTS addresses trust issue during the construction and maintenance of routing paths from each node to the BR (Border Router). To handle this issue, we extend DIO (DODAG Information Object) message by introducing a new trust-based metric ERNT (Extended RPL Node Trustworthiness) and a new Objective Function TOF (Trust Objective Function). In fact, ERNT represents the trust values for each node within the network, and TOF demonstrates how ERNT is mapped to path cost. In MRTS all nodes collaborate to calculate ERNT by taking into account nodes' behavior including selfishness, energy, and honesty components. We implemented our scheme by extending the distributed Bellman-Ford algorithm. Evaluation results demonstrated that the new scheme improves the security of RPL.

Medjek, F., Tandjaoui, D., Romdhani, I., Djedjig, N..  2017.  Performance Evaluation of RPL Protocol under Mobile Sybil Attacks. 2017 IEEE Trustcom/BigDataSE/ICESS. :1049–1055.

In Sybil attacks, a physical adversary takes multiple fabricated or stolen identities to maliciously manipulate the network. These attacks are very harmful for Internet of Things (IoT) applications. In this paper we implemented and evaluated the performance of RPL (Routing Protocol for Low-Power and Lossy Networks) routing protocol under mobile sybil attacks, namely SybM, with respect to control overhead, packet delivery and energy consumption. In SybM attacks, Sybil nodes take the advantage of their mobility and the weakness of RPL to handle identity and mobility, to flood the network with fake control messages from different locations. To counter these type of attacks we propose a trust-based intrusion detection system based on RPL.

2018-03-19
Alzubaidi, M., Anbar, M., Al-Saleem, S., Al-Sarawi, S., Alieyan, K..  2017.  Review on Mechanisms for Detecting Sinkhole Attacks on RPLs. 2017 8th International Conference on Information Technology (ICIT). :369–374.

Internet Protocol version 6 (IPv6) over Low power Wireless Personal Area Networks (6LoWPAN) is extensively used in wireless sensor networks (WSNs) due to its ability to transmit IPv6 packet with low bandwidth and limited resources. 6LoWPAN has several operations in each layer. Most existing security challenges are focused on the network layer, which is represented by its routing protocol for low-power and lossy network (RPL). RPL components include WSN nodes that have constrained resources. Therefore, the exposure of RPL to various attacks may lead to network damage. A sinkhole attack is a routing attack that could affect the network topology. This paper aims to investigate the existing detection mechanisms used in detecting sinkhole attack on RPL-based networks. This work categorizes and presents each mechanism according to certain aspects. Then, their advantages and drawbacks with regard to resource consumption and false positive rate are discussed and compared.